Two beam test stand

(status on 2007.04.10)

C. Achard, G. Riddone, AB-RF
Content

• Introduction
• Organisation
• Phases
• Layout progress
• Schedule
Two-beam test stand
CTF3 collaboration meeting
Walter’s talk

Principle objectives of two-beam test stand:

High-power test of PETS - first full pulse length tests of CLIC (lengthened) prototypes

12 GHz high-power test of accelerating structures

Measurement of kick from rf breakdown

High-power test of PETS on/off mechanism

Operation of CLIC module

Must be built to be flexible and easily reconfigured
Organisation

- CERN AB and SLAC: RF design
- CERN TS: mechanical design of PETS and ac. structures + rf components
- CERN AB and Pakistan, National Institute of Physics:
 - design of the overall layout and integration,
 - design, fabrication, installation and commissioning of the experimental vessels and related subsystems

For two-beam test stand
- Uppsala: layout, instrumentation and experiments.
- Saclay: the probe beam and experiments.
Valve coordinates

- Center the two experimental areas (check also wrto the clic module) (GR)
- recheck length of the table (RR)
Phases

- Phase 1: PETS and loads (no accelerating structures)
- Phase 2: PETS and one accelerating structure
- Phase 3: PETS and a series of accelerating structure (clic module)
Phase 1

PETS \(174 \text{ MW} \times (1/0.8)^{0.5} = 270 \text{ MW} \times 140 \text{ ns} \)

120 MW/load x 5 Hz x 140 ns

Beam direction
30 A, 140 ns
Phase 3
Tank

- Easy to open/close (gasket + bolts)
- Tooling to extract/introduce the structure
- Shall include alignment/supporting/cooling.. Functions
- Integrate also the WG network

Strategy
- How many tanks: 2 (one for operation and one for preparation)
- Which dimensions: 1.8 m long, diameter 400 mm
Tank

Warning: total length of the tank including extremities!
Cooling

- Different possibility:
 - No water inside the tank
 - Water inside the tank:
 - Inside the PETS bars
 - Outside the PETS bars (favorite solution)

- Contact R. Corsini to get the average beam loss for the PETS
- Add collimator between RF finger and PETS inside the tank to be water cooled
Alignment and supporting system

• Specification: alignment precision 10 μm
• Adjustable internal supporting system
 – Dz: +/-10 mm
 – Dx: +/- 5 mm
 – Dy: +/- 5 mm
• Adjustable external supporting system (values to be confirmed by RR)
 – Dz: +/-10 mm
 – Dx: +/- 5 mm
 – Dy: +/- 5 mm
• Targets and « inclinomètre » on the tank
 – Alignment wrto the reference beam axis ➔ fixed position
 – Alignment wrto the reference targets
Cover plate

- Based on the replacement PETS design
- RF contact
 - We need the RF contact
 - Use RF contact design
RF components

• Collaboration with SLAC
 – SLAC drawings to be adapted to our needs (Alexej, Raquel, Igor, Riccardo)
 • First meeting next week
<table>
<thead>
<tr>
<th>Year 2007</th>
<th>Year 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2007</td>
<td>January 2008</td>
</tr>
<tr>
<td>CW12</td>
<td>CW01</td>
</tr>
<tr>
<td>CW03</td>
<td>CW02</td>
</tr>
<tr>
<td>CW14</td>
<td>CW03</td>
</tr>
<tr>
<td>April 2007</td>
<td>CW04</td>
</tr>
<tr>
<td>May 2007</td>
<td>March 2008</td>
</tr>
<tr>
<td>CW20</td>
<td>CW11</td>
</tr>
<tr>
<td>June 2007</td>
<td>April 2008</td>
</tr>
<tr>
<td>CW25</td>
<td>CW14</td>
</tr>
<tr>
<td>July 2007</td>
<td>May 2008</td>
</tr>
<tr>
<td>CW26</td>
<td>CW10</td>
</tr>
<tr>
<td>August 2007</td>
<td>June 2008</td>
</tr>
<tr>
<td>CW32</td>
<td>CW23</td>
</tr>
<tr>
<td>September 2007</td>
<td>July 2008</td>
</tr>
<tr>
<td>CW33</td>
<td>CW21</td>
</tr>
<tr>
<td>October 2007</td>
<td>August 2008</td>
</tr>
<tr>
<td>CW39</td>
<td>CW22</td>
</tr>
<tr>
<td>November 2007</td>
<td>September 2008</td>
</tr>
<tr>
<td>CW40</td>
<td>CW40</td>
</tr>
<tr>
<td>December 2007</td>
<td>October 2008</td>
</tr>
<tr>
<td>CW50</td>
<td>CW41</td>
</tr>
</tbody>
</table>

Two-beam test stand schedule

<table>
<thead>
<tr>
<th>Layout</th>
<th>PETS</th>
<th>RF components</th>
<th>Accelerating structures</th>
<th>Tank PETs</th>
<th>Tank ac. str.</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceptual layout</td>
<td>Design</td>
<td>Mechanical design</td>
<td>Procurement</td>
<td>Test</td>
<td>Mechanical design</td>
<td>Procurement</td>
</tr>
<tr>
<td>Supporting layout</td>
<td>Design</td>
<td>Mechanical design</td>
<td>Test</td>
<td>Test</td>
<td>Mechanical design</td>
<td>Test</td>
</tr>
<tr>
<td>Detailed layout</td>
<td>Procurement</td>
<td>CERN, design, test</td>
<td>Design</td>
<td>Design</td>
<td>CERN, design, test</td>
<td>Design</td>
</tr>
<tr>
<td>Integration</td>
<td>Design</td>
<td>CERN, design, test</td>
<td>Design</td>
<td>Design</td>
<td>CERN, design, test</td>
<td>Design</td>
</tr>
</tbody>
</table>

Installation & O&G: Commissioning