FOCUS COIL STATUS

RAL V. Bayliss T. Bradshaw

LIDY

(FO

Blackmo

W. Lau

obb

P

M. Courthold R. Preece

J. Tarrant M. Tucker

S. Watson

DARESBUR T. Hartnett S. Griffiths I. Mullacrane A. Oates P. Owens C. White

OUTLINE

- FC 1 training history 2013
- FC 2 status
- FC 1 rides again in 2014
- De-rating for MICE Step IV
- Plans

REMINDER

- FC Modules contain two coils operated in:
 - 'Solenoid mode' = same polarity
 - 'Flip mode' = opposite polarity
 - More demanding:
 - 2 x higher currents
 - 2 x higher fields at conductors
 - 4 x higher forces and stored energy
- Still responsibility of manufacturers

FC 1 HISTORY

- Insufficient tension on CM supports
- Lack of excess cooling at 4K
 - Insulation between stages of cryocoolers omitted
- Training stopped when FC 2 arrived
 - Fate of FC 1 to depend on performance of FC 2

ENTER FC 2

- FC 2 arrived end October 2013
- FC 1 disconnected & moved
- FC 2
 - Connected
 - Pumped down
 - Started to cool with cryocoolers

THREE STRIKES & YOU'RE OUT...

- 1. Fault with temp sensor on cold mass
 - Just liveable with
- 2. Leak in He system
 - Just outside spec. at 293K
 - Increasing with decrease in T
 - Suggests on cold mass
- 3. Could not cool cold mass < 9K
 - Rad shield ~120K cf 60K
 - Condensation on warm bore
 - One spot at one end
 - Thermal shorts
- → Warm up and...

FC 2 GOES BACK TO MEET ITS MAKER

First week in January 2014

FC 2 INVESTIGATIONS

- Forensic disassembly established source of thermal shorts:
 - Cold mass / rad. shield / warm bore tube not concentric
 6mm clearance reduced to 3mm → compressed MLI
 - 2. Debris of pop-rivet on radiation shield impinging on cold mass

Calculations agree with observed thermal loads

FC Status MPB

FC 2 REPAIR & PLAN

- He leak is somewhere on cold mass
- Decide with manufacturer *not* to remove cold mass to fix it
 - Like brain surgery
 - Risk to connections to cold mass, leads...
 - Almost impossible to test *cold* at manufacturers
 - May have to pump fairly hard?
 - We don't know
 - Want to assess *electrical* performance of FC 2
 - To inform FC 1 decisions
- Manufacturer will:
 - 1. Replace thermal sensor & wiring
 - 2. Add spare sensor
 - 3. Reassemble *carefully*
 - Alignment of CM / Rad. shield / bore tube
- Expect delivery mid / late May

ABSORBER FIT CHECK

• It fits

FC 1 RIDES AGAIN

- First two weeks of January
 - Cryocooler insulation added
 - CM support tensions increased
- Start cool down
 - Lost some time due to damaged pressure relief valve
- Start training again

FC 1 QUENCH HISTORY 2014

- Three training runs after warm[/]up
 - Module remembered its training !
- First estimate of stable operating current was 185 Amps
 - Two stable 4-hour runs at 185 Amps
 - Quenched at 183 Amps on third attempt
- Stable at 180 Amps for ~20 hours night of 24 25 April

CRYOCOOLER PERFORMANCE IMPROVED

He bath heater activating at full current -> excess cooling capacity

Cryocooler performance increased by > 50%

QUENCH DIAGNOSTICS

- New fast voltage logging system commissioned
- Coil voltages build up as expected
 Not noise triggers of QP system
- No longer see 'stick-slip' precursors but 'event' always precedes quench
 - Quenches not due to slow build up of heat in coils
- Possible conductor movement?

USING FC 1 IN STEP IV

- May have to use FC 1 in Step IV
- Assume it's stable at 180 A maximum *in isolation*
- In Step IV it must work in presence of Spectrometer Solenoids
 - Will change the local environment (fields & forces)
- Must de-rate for two reasons:
 - 1. Technical
 - Must be stable, i.e. not quench
 - 2. Operational
 - Need headroom for tuning
 - e.g. beam momentum known to only 1 2 %
 - Would need this headroom in any case
 - Expected ~ 20%
- De-rate based on forces...

FORCES IN STEP IV

_		Е	С	E	Μ	Μ	FC	FC	Μ	Μ	Е	С	E	
	Abs(J)	135.18	152.44	127.37	137.13	118.56	104.92	104.92	118.56	137.13	127.37	152.44	135.18	
E	135.18	0.0	141.6	0.7	0.2	0.2	0.1	-0.1	0.0	0.0	0.0	0.0	0.0	142.6
С	152.44	-142.4	0.0	120.8	12.5	3.6	1.8	-1.0	-0.2	0.0	0.0	-0.2	0.0	-5.1
Ε	127.37	-0.5	-120.2	0.0	26.4	4.5	1.5	-0.7	0.0	0.0	0.0	0.0	0.0	-89.0
Μ	137.13	-0.2	-12.8	-26.4	0.0	27.2	4.0	-1.3	-0.2	0.0	0.0	0.0	0.0	-9.6
Μ	118.56	-0.2	-3.6	-4.5	-27.3	0.0	28.2	-6.1	-0.4	-0.2	-0.2	-0.2	0.0	-14.4
FC	104.92	-0.1	-1.9	-1.5	-4.0	-28.2	0.0	-220.9	-6.1	-1.3	-0.7	-1.0	-0.1	-265.9
FC	104.92	0.1	1.0	0.7	1.3	6.1	221.0	0.0	28.2	4.0	1.5	1.9	0.1	266.0
Μ	118.56	0.0	0.2	0.2	0.2	0.4	6.1	-28.4	0.0	27.3	4.7	3.6	0.2	14.4
Μ	137.13	0.0	0.0	0.0	0.0	0.2	1.3	-4.0	-27.3	0.0	27.4	12.5	0.2	10.3
Ε	127.37	0.0	0.0	0.0	0.0	0.2	0.7	-1.5	-4.7	-27.1	0.0	115.5	0.5	83.6
С	152.44	0.0	0.2	0.0	0.0	0.2	1.0	-1.9	-3.6	-12.5	-114.2	0.0	140.3	9.5
Ε	135.18	0.0	0.0	0.0	0.0	0.0	6	-0.1	-0.2	-0.2	-0.5	-141.6	0.0	-142.4
		-143.3	4.5	89.9	9.2	14.2	265.8	-266.0	-14.4	-9.9	-81.9	-9.3	141.2	0.008

Force Matrix for Step IV at nominal baseline operating currents, I(FC) = 188 Amps

- Force on a single FC coil increases from
 - 203 tons in isolation at 180 A → 246 tons in STEP IV
 - i.e. + 43 tons in presence of SS
- <u>Assume quench occurs at same force on FC coil</u>
 - − Reduce current to 170 Amps → same force
 - Allow 3% headroom 170 A → 165 Amps = 88% of 'baseline'

DE-RATED OPERATION

FC 1 Training Flip Mode

BEAM OPTICS WITH DE-RATED FC

- Matched optics possible even with 20% de-rated FC
 - Discussed at last MPB & in other talks

PLANS

- Need to see how FC 2 behaves asap
 - Informs what we do with FC 1 & how we interact with manufacturer
- Have ~ 3 4 weeks to work with FC 1
 - Before instrumentation needed for FC 2
- Devote ~ two weeks to mapping FC 1
 - CERN-built mapper
 - Infinite data...
 - Confirm position of coils
 - Also is stability test
 - May solve puzzle of why measured field ~1.5% > calculated field
- Then start cool down of FC 2
 - Assess He leak cold
 - Power & test

