

MICE Computing and Infrastructure

Chris Rogers,
ASTeC,
Rutherford Appleton Laboratory

Overview

- Software and Computing
 - Aims
 - Requirements
 - Process Overview
 - Top Level Organisation
- Computing Infrastructure
 - GRID services
 - Configuration Management
 - Infrastructure WBS
 - Infrastructure Plans
- Conclusions

Software and Computing

Computing and Software aims

- MICE software and computing project aims to
 - Readout the detectors
 - Data Acquisition DAQ
 - Convert electronics signals to physics parameters
 - reconstruction
 - Provide monte carlo model
 - Provide online physics outputs
 - Online monitoring
 - Online reconstruction
 - Online event display
 - Provide controls interfaces to, and monitoring of, hardware
 - Controls and Monitoring
 - Provide some support services e.g. web services, data curation
- Provide online feedback with physics data
 - e.g. phase space distributions at each detector in real time
- Provide reconstructed data for analysis within 24 hours of data taking

Requirements

- Complex particle physics style detectors
 - Calibrations need to be performed weekly monthly
 - Fiddly pattern recognition algorithms
 - Fiddly matching between different detectors
- Precision modelling requirements
 - Field model accuracy ~ O(1e-3) relative precision
 - Alignment precisions O(0.1) mm O(1) mm
 - Tracking to O(100) micron (<< tracker resolution) over 10 m
- Tricky configuration management requirements
 - Currents change ~ hourly
 - Geometry changes ~ weekly-monthly
- Share the worst bits of accelerator and particle physics requirements

Process Diagram

S/w & Computing Organisation

Version date: 9th April 2014; revision C

- Online responsible for MICE local control room (MLCR) systems
 - Controls, DAQ, reconstruction servers
 - DAQ electronics
 - DAQ control software
 - Online monitoring (of DAQ)
- Infrastructure responsible for computing "glue"
 - Configuration management
 - GRID services
 - Web services
 - Rogers acting as interim manager

S/w & Computing Organisation

- Offline responsible for developing physics tools
 - Reconstruction of detectors
 - Monte carlo modelling of the experiment
- Controls and monitoring responsible for slow control of hardware
 - Interface to control electronics for each subsystem
 - Storage of monitored variables
 - User interfaces

Infrastructure

Infrastructure

- Infrastructure project provides "glue" for offline computing tasks
 - GRID services
 - Configuration Management
 - Web services
- Infrastructure project owns mechanics of the glue
 - We do not fill databases
 - We do not determine physics parameters

Infrastructure - GRID

- GRID services
 - Data movement
 - Take data from the control room to permanent storage
 - Data curation
 - Long term storage of MICE raw data and ancillary data
 - Execution of offline reconstruction
 - 24 hour turnaround for detector reconstruction
 - Includes a monte carlo of the data set
 - Batch reprocessing
 - Redo reconstruction and monte carlo following e.g. new calibration
 - MC production
 - Pure monte carlo jobs for e.g. experimental planning, systematics studies, etc
 - Data movement between GRID sites (GRID Download Agent)
 - Management of storage area (Metadata DB)
- Infrastructure project owns mechanics of executing the code
 - We do not plan the physics needs (physics group)
 - We do not develop mc/recon code (offline group)

Infrastructure - Configuration

- Configuration Filestore
 - Store for pre-configuration data e.g. raw calibration data
 - Aim to provide full audit trail for reconstruction
- Configuration Database
 - Storage and interface for configuration data
 - Calibrations
 - Geometries, field maps
 - Magnet currents
 - Etc
 - Read/Write interface for access from MLCR only
 - Hosted in MLCR
 - Read interface for access from internet
 - Hosted in RAL PPD rack room
 - Postgres DB
 - Web service layer
 - Server side is in Java
 - Client side principally in python
 - Developing interfaces in C for Controls and Monitoring interface
 - Web based GUI for physics analysis users

Infrastructure - Web Services

- MICE also manages a number of web services
 - Main MICE web site mice.iit.edu
 - MICE wiki micewww.pp.rl.ac.uk
 - MICE bastion: Remote access to MICE local control room
 - EPICS gateway: Remote access to controls and monitoring
 - Remote access to CDB
 - Jenkins: MAUS test servers

- Janusz Martyniak (Imperial)
 - At 50 % FTE
- Henry Nebrensky (Brunel)
 - At 20 % FTE
- Chris Rogers (RAL)
 - At 20 % FTE
- Durga Rajaram (IIT)
 - At 10 % FTE
- Simon Fayer, Ray Beuselinck (Imperial)
 - At 10 % FTE

Pacakge status

- GRID
 - Data movement of production experimental data from the control room to CASTOR grid storage has been implemented
 - Dissemination of data to other GRID sites is implemented
 - Dissemination of software to GRID sites is automatic
 - Production runs have been performed for offline reconstruction and batch reprocessing
- Configuration Database tables are in production for
 - Muon beamline and cooling channel magnet currents
 - EPICS alarm handler and state machine
 - Detector cabling, detector calibration
 - Target operation
 - PID detector status
 - Geometry
- MICE web services have typical uptimes > 99 %

Ongoing work

- GRID
 - Upgrade data mover to SL6
 - Automate data movement to GRID
 - Storage of "miscellaneous" data
 - Execution of batch reprocessing
- Configuration Database
 - Tables for controlling batch/GRID jobs
 - Store metadata information e.g. systems failures during data taking
 - C API for EPICS interface
 - Replacement of main storage node in RAL PPD
 - Tables for managing tracker controls
- Web services
 - Replacement of main storage node in RAL PPD
 - Update/refactor of mice.iit.edu (main MICE website)
 - Migrate EPICS, MICE bastion to more resilient virtualisation server
 - Add SL6 server to MAUS test servers

Work plan

- First iteration
 - Developing experience in running to a project plan
 - Errors ~ 50%
 - No proper assessment of risk
- Initial analysis shows we are stressed at Martyniak

Conclusions

- Complexity in the computing project is driven by
 - Difficult diagnostics compared to e.g. conventional accelerator diagnostics
 - High precision requirements
 - Complexities of the configuration
- Seek to provide a robust framework to support physics analysis
 - The aim is that no one notices our work!