
Compiler Options Affecting Floating-Point
Arithmetic

Jeff Arnold

6 May 2014

Jeff Arnold Compiler Options Affecting Floating-Point Arithmetic 1

Agenda

• Value Safety

• Subnormals

• Math Libraries

• Exercises

Jeff Arnold Compiler Options Affecting Floating-Point Arithmetic 2

A Note on Compiler Options

• There are many compiler options which affect floating-point
results

• Not all of them are obvious

• Some of them are enabled/disabled by other options
• -On
• -march and others which specify platform characteristics

• Options differ among compilers

Jeff Arnold Compiler Options Affecting Floating-Point Arithmetic 3

Value Safety

“Value Safety” refers to transformations which, while algebraically
valid, may affect floating-point results.

“Value Safety” requires that optimizations which could conceivably
change the result of any floating-point calculation as specified by
the programming language used in any possible way are disallowed.

• Changes to underflow or overflow behavior

• Effects of an operand which is not a normal floating-point
number. E.g., ±∞ or a NaN

Jeff Arnold Compiler Options Affecting Floating-Point Arithmetic 4

Value Safety

In “safe” mode, the compiler may not make changes such as

(x + y) + z ⇔ x + (y + z) Reassociations are not value-safe
x ∗ (y + z)⇔ x ∗ y + x ∗ z Distributions are not value-safe
x/x ⇔ 1.0 x may be 0, ∞ or a NaN
x + 0⇔ x x may be −0 or a NaN
x ∗ 0⇔ 0 x may be −0, ∞ or a NaN
· · ·

Jeff Arnold Compiler Options Affecting Floating-Point Arithmetic 5

Optimizations Affecting Value Safety

• Expression rearrangements

• Flush-to-zero

• Approximate division and square root

• Math library accuracy

Jeff Arnold Compiler Options Affecting Floating-Point Arithmetic 6

Expression Rearrangements

These rearrangements are not value-safe:

• (a⊕ b)⊕ c ⇒ a⊕ (b ⊕ c)

• a⊗ (b ⊕ c)⇒ (a⊗ b)⊕ (a⊕ c)

To disallow these changes:

gcc Don’t use -ffast-math

icc Use -fp-model precise

• Recall that options such as -On are “aggregated” or
“composite” options

• they enable/disable many other options
• their composition may change with new compiler releases

Disallowing rearrangements may affect performance

Jeff Arnold Compiler Options Affecting Floating-Point Arithmetic 7

Subnormal Numbers and Flush-To-Zero

• Subnormal numbers extend the range of floating-point
numbers but with reduced precision and reduced performance

• If you do not require subnormals, disable their generation

• “Flush-To-Zero” means “Replace all generated subnormals
with 0”

• Note that this may affect tests for == 0.0 and != 0.0

• If using SSE or AVX, this replacement is fast since it is done
by the hardware

Jeff Arnold Compiler Options Affecting Floating-Point Arithmetic 8

Subnormal Numbers and Flush-To-Zero

gcc -ffast-math enables flush-to-zero

gcc But -O3 -ffast-math disables flush-to-zero

icc Done by default at -O1 or higher

icc Use of -no-ftz or fp-model precise to will prevent this

icc Use -fp-model precise -ftz to get both “precise”
behavior and subnormals

• Options must be applied to the program unit containing main

as well

Jeff Arnold Compiler Options Affecting Floating-Point Arithmetic 9

Reductions

• Summation is an example of a reduction

• Parallel implementations of reductions are inherently
value-unsafe

• the parallel implementation can be through vectorization or
multi-threading or both

icc use of -fp-model precise disables vectorization and
parallelization via threading

• there are OpenMP and TBB options to make reductions
“reproducible”

• For OpenMP KMP DETERMINSTIC REDUCTION=yes

Jeff Arnold Compiler Options Affecting Floating-Point Arithmetic 10

The Hardware Floating-Point Environment

The hardware floating-point environment is controled by the FPU
control word

• Rounding mode

• Status flags

• Exception mask

• Control of subnormals

If you change anything affecting the default state of the FPU, you
must tell the compiler

• Use #pragma STDC FENV ACCESS ON

icc Use -fp-model strict

#pragma STDC FENV ACCESS ON is required if flags are accessed

Jeff Arnold Compiler Options Affecting Floating-Point Arithmetic 11

Precise Exceptions

“Precise Exceptions”: floating-point exceptions are reported
exactly when they occur

To enable precision exceptions

• Use #pragma float control(except, on)

icc Use -fp-model strict or -fp-model except

Enabling precise exceptions disables speculative execution of
floating-point instructions

Jeff Arnold Compiler Options Affecting Floating-Point Arithmetic 12

Math Library Features – icc

A variety of options to control precision and consistency of results

• -fimf-precision=<high|medium|low>[:funclist]

• -fimf-arch-consistency=<true|false>[:funclist]

• And several more options
• -fimf-absolute-error=<value>[:funclist]
• -fimf-accuracy-bits=<value>[:funclist]
• . . .

Jeff Arnold Compiler Options Affecting Floating-Point Arithmetic 13

Questions

Jeff Arnold Compiler Options Affecting Floating-Point Arithmetic 14

Exercises

• Reassociation

Experiment with x=a+b+c or a+(b+c) or (a+b)+c

Also the replacement x/y ⇒ x ∗ (1.0/y)

• Abrupt Underflow

Experiment with subnormals

Jeff Arnold Compiler Options Affecting Floating-Point Arithmetic 15

