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Common wisdom

The more accurate you compute, the more expensive it gets

In practice

We (hopefully) notice it when our computation is
not accurate enough.

But do we notice it when it is too accurate for our needs ?

Reconciling performance and accuracy ?

Or, regaining performance by computing just right ?
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Double precision spoils us

The standard binary64 format (formerly known as double-precision)
provides roughly 16 decimal digits.

Why should anybody need such accuracy ?

Count the digits in the following

Definition of the second : the duration of 9,192,631,770 periods of
the radiation corresponding to the transition between the two
hyperfine levels of the ground state of the cesium 133 atom.

Definition of the metre : the distance travelled by light in vacuum
in 1/299,792,458 of a second.

Most accurate measurement ever (another atomic frequency)
to 14 decimal places

Most accurate measurement of the Planck constant to date :
to 7 decimal places

The gravitation constant G is known to 3 decimal places only
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Parenthesis : then why binary64 ?

This PC computes 109 operations per second (1 gigaflops)

An allegory due to Kulisch

print the numbers in 100 lines of 5 columns double-sided :
1000 numbers/sheet

1000 sheets ≈ a heap of 10 cm

109 flops ≈ heap height speed of 100m/s, or 360km/h

A teraflops (1012 op/s) prints to the moon in one second

Current top 500 computers reach the petaflop (1015 op/s)

each operation may involve a relative error of 10−16,
and they accumulate.

Doesn’t this sound wrong ?

We would use these 16 digits just to accumulate garbage in them ?
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Back to the point

... which was :

Mastering accuracy for performance

When implementing a “computing core”

A goal : never compute more accurately than needed

Two sub-goals

Know what accuracy you need
Know how accurate you compute

“Computing cores” considered so far : elementary functions, sums of
products, linear algebra, Euclidean lattices algorithms.

By the way

“computing just right” implies “computing right”...

Florent de Dinechin, CITILab/Socrates MetaLibm updates 7



A general technique for computing just right

I’ve seen it for orientation predicates, area of a triangle, elementary
functions...

Fast in average, always accurate

1. use a quick and dirty routine

2. runtime-test if it was accurate enough

3. launch an expensive, accurate routine only when needed

If done well, average time is close to that of the quick routine

Only works if you know how to implement step 2

... requires to understand/master/engineer the accuracy of your code.

The rest of this talk is about this... elementary functions being used as
an easy example.
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A producer/consumer mismatch

On the producer side

Specification : a mathematical function function (e.g. log), and a
floating-point format (binary32 or binary64)

Obviously, one should return the correct rounding of log(x)
(IEEE-754-2008)

Anything less means wasting bits, probably cheating for speed, and
introducing system-specific idiosyncrasies.

On the consumer side

Code should

1. use all the available space but no more,

2. be as fast as possible, and

3. be “accurate enough”

Correctly rounded probably vast overkill for “accurate enough”.
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Not only a quantitative matter

The overkill is not only about the accuracy (the number of correct bits).
Just two examples :

In binary floating-point, sin(x) is very difficult to evaluate,
just because 2 and π are irrational.

IEEE754-2008 introduced the new function sinPi(x) = sin(πx).
For most applications, it is just as good, only faster.

Fixed-point versus floating-point (see next slide)
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Fixed-point versus floating-point

What is wrong with the following computation in floating-point ?

s =
n∑

i=1

xi y = es

A fix-point number is a binary integer, scaled by some constant 2m

cheaper to compute on (addition defines the PC’s cycle time)

simpler to analyze (addition is exact until it overflows)

most sensors provide fixed-point data

many computations are inherently fixed-point
(i.e. do not take very large values nor need arbitrary resolution
around 0).

Exponential and logarithm functions

... map a fixed-point range to a floating-point-range
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I’m schizophrenic, but I’m under treatment

On one side, I’m advocating perfectly accurate (correctly rounded)
functions.

On the other side, I’m advocating “computing just right” using less
accurate functions

This MetaLibm in the title

should provide all these variants

... if you provide it with explicit accuracy specifications

(yes I’m trying to twist your arm into computing just right)
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How does your PC compute elementary functions ?

Rule of the game : use the hardware, i.e. +, −, ×
(and maybe / and

√
but they are expensive).

Polynomial approximation works on a small interval

Argument reduction : using mathematical identities, transform
large arguments in small ones

Simplistic example : an exponential

identity : ea+b = ea × eb

split x = a + b

a : k leading bits of x
b : lower bits of x b << 1

tabulate all the ea (2k entries)

use a Taylor polynomial for eb
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Know how accurate you compute

Approximation errors

example : approximate a function f with a polynomial p :
||p − f ||∞ ?
(see next slide)
in general : approximate an object by another one

Rounding errors

for data, often called quantization errors ;
for operations, each individual error well specified by IEEE-754
but their accumulation difficult to manage

In physics : time discretization errors, etc
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Approximation of a function by a polynomial

-5e-18

-4e-18

-3e-18

-2e-18

-1e-18

 0

 1e-18

-0.003 -0.002 -0.001  0  0.001  0.002  0.003

||p − f ||∞ for degree-5 Taylor and Remez approx. to exp on [−2−8, 2−8]
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What is an error ? What is accuracy ?

The most important sentence of this talk

An error is a difference (absolute or relative) between two values,
one being a reference for the other.

Examples :

||p − f ||∞ above is an upper bound of the approximation error

error of the polynomial is with reference to the function (easy)

error of the FP addition is with reference of the real sum (easy)

error of one FP addition within the polynomial evaluation ?
(difficult because we have no direct reference in the function)

yesterday : accuracy of the summation algorithms ?

Never say “the error of this term is ...” :
it doesn’t mean anything without the reference.

If you are not able to define the reference value,
you will not be able to know how accurate you compute

Florent de Dinechin, CITILab/Socrates MetaLibm updates 18



Parenthesis : reproductibility and predictability

As soon as we are able to define the reference value,
who cares about exact reproductibility ?

What matters is to be able to reproduce enough significant digits.

The compiler will not help you there :
No compiler has no access to the reference ! It is not in the code.
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Let us take a simple example

This is part of the code of sin,
after y has been reduced to [−π/256, π/256] :

1 s3 = -0.16666666666666665741480812812369549646973609924;
2 s5 = 8.33333333262892793358300735917509882710874081e-3;
3 s7 = -1.98400103113668426196153360407947729981970042e-4;
4

5 y2 = y * y;
6 ts = y2 * (s3 + y2*(s5 + y2*s7));
7 r = y + y*ts

evaluation of sine as an odd polynomial
p(y) = y + s3y 3 + s5y 5 + s7y 7

(think Taylor for now)

reparenthesized as p(y) = y + yt(y 2) to save operations

y + y*ts is more accurate than y*(1+ts) in floating-point,
do you see why ?
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Rounding errors piled over approximations

1 s3 = -0.16666666666666665741480812812369549646973609924;
2 s5 = 8.33333333262892793358300735917509882710874081e-3;
3 s7 = -1.98400103113668426196153360407947729981970042e-4;
4

5 y2 = y * y;
6 ts = y2 * (s3 + y2*(s5 + y2*s7));
7 r = y + y*ts

This polynomial is an approximation to sin(y)

Oops, I wrote its coefficients in decimal !

In general, y is not the ideal reduced argument Y
(such that x = Y + k π

256 )

We have a rounding error in computing y 2

y2 already stacks two errors. We evaluate ts out of it

There is a rounding error hidden in each operation.

How many correct bits at the end ?
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Important information NOT in the code

The context

y ∈ [−π/256, π/256]

What it is supposed to compute

a sine accurate to 2−60

My programmer expertise

y*(1+ts) is a bit less accurate than y + y*ts in floating-point
... because |t| < 2−14 because |y | < 2−7

1

+ t

= 1+t

y

+ y*t

= y+y*t
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On the positive side : combining errors is easy

Since an error is a difference :

F (x)− f (x) = F (x)− p(x) + p(x)− f (x)
(rounding error + polynomial approximation error)

|F (x)− f (x)| ≤ |F (x)− p(x)| + |p(x)− f (x)|

... then recurse on F (x)− p(x)

Difficulties

define “intermediate reference values”

do not forget anything

relative errors :

a− c

c
=

a− b

b
+

b − c

c
+

a− b

b
× b − c

c

Later in this talk : Gappa, a tool that helps you with all this
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Know what accuracy you need ?

Correctly rounded elementary functions

IEEE-754 floating-point single or double-precision

Elementary functions : sin, cos, exp, log, implemented in the
“standard mathematical library” (libm)

Correctly rounded : As perfect as can be, considering the finite
nature of floating-point arithmetic

same standard of quality as +,×, /,√

Now recommended by the IEEE754-2008 standard,
but long considered too expensive

because of the Table Maker’s Dilemma
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The Table Maker’s Dilemma

Finite-precision algorithm for evaluating f (x)

Approximation + rounding errors −→ overall error bound ε.

What we compute : y such that f (x) ∈ [y − ε, y + ε]

?

y ± ε y ± ε

Dilemma if this interval contains a midpoint between two FP numbers
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The first digital signature algorithm

I want 12 significant digits

I have an approximation scheme that
provides 14 digits

or,
y = log(x)± 10−14

“Usually” that’s enough to round

y = x , xxxxxxxxxxx17± 10−14

y = x , xxxxxxxxxxx83± 10−14

Dilemma when

y = x , xxxxxxxxxxx50± 10−14

The first table-makers rounded these cases randomly, and recorded them to

confound copiers.
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Solving the table maker’s dilemma

y ± ε1 y ± ε2

Ziv’s onion peeling algorithm

1. Initialisation : ε = ε1

2. Compute y such that f (x) = y ± ε
3. Does y ± ε contain the middle point between two FP numbers ?

If no, return RN(y)
If yes,dilemma ! Reduce ε, and go back to 2

It is a while loop... we have to show it terminates, a topic in itself.
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Accuracy versus performance

CRLibm : 2-step approximation process

first step fast but accurate to ε1

sometimes not accurate enough

(rarely) second step slower but always accurate enough

Tavg = T1 + p2T2

For each step, we need a tight bound on the error of the code :

|F (x)− f (x)

f (x)
| ≤ ε

Overestimating ε2 degrades T2 ! (common wisdom)
Overestimating ε1 degrades p2 !

?

y ± ε1 y ± ε1
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First function development in Arénaire

First correctly rounded elementary function in CRLibm

exp by David Defour

worst-case time T2 ≈ 10,000 cycles

complex, hand-written proof

duration : a Ph.D. thesis (2002)

Conclusion was :

performance and memory consumption of CR elem function is OK

problem now is : performance and coffee consumption of the programmer
(and that is because of the need for tight error bounds)
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Latest CR function developments in our group

C. Lauter at the end of his PhD

development time for sinpi, cospi, tanpi : 2 days

worst-case time T2 ≈ 1,000 cycles

(but as a result of three more PhDs)

With MetaLibm prototype

development time for 16 variants of sinpi, cospi, sincospi : 1 day
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The GMP family

GMP (GNU Multiple Precision) and its beautiful C++ wrapper

integer arithmetic
best asymptotic algorithms + lower layers in hand-crafted assembly
code

MPFR : Multiple Precision Floating-point correctly Rounded

a floating-point layer on top of GMP
IEEE 754-like specification
Now a dependency of GCC, so you probably have it installed
Unfortunately, no hope of a beautiful C++ wrapper
that would always take the proper decision as of where to round

MPFI : interval arithmetic on top of MPFR
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Sollya (1)

Open-source, LGPL, http://sollya.gforge.inria.fr/
The Swiss Army Knife of the libm developer (Lauter, Chevillard, Joldes)

Killer feature 1

apologizes each time it rounds something

1 fdedinec@krupnik: sollya
2 > 1+1;
3 2
4 > 1/3;
5 Warning: rounding has happened. The value displayed is a

faithful rounding of the true result.
6 0.33333333333333333333333333333333333333333333333333
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The Patriot bug

In 1991, a Patriot missile failed to intercept a Scud, and 28 people were
killed.

The code worked with time increments of 0.1 s.

But 0.1 is not representable in binary.

In the 24-bit format used, the number stored was
0.099999904632568359375

The error was 0.0000000953.

After 100 hours = 360,000 seconds, time is wrong by 0.34s.

In 0.34s, a Scud moves 500m

In single, we don’t have that many bits to accumulate garbage in them !

Test : which of the following increments should you use ?

10 5 3 1 0.5 0.25 0.2 0.125 0.1
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Sollya (2)

Killer feature 2

multiple-precision, last-bit accurate evaluation of arbitrary expressions

1 fdedinec@krupnik: sollya
2 > e=exp(x) - (1+x+x^2/2+x^3/6);
3 > e(0.125);
4 Warning: rounding has happened. The value displayed is a

faithful rounding of the true result.
5 1.04322334929834956738944784605392321697984118482926e-5
6 >

All these digits are meaningful ! This is better than Maple.
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Sollya (3)

Killer feature 3

guaranteed infinite norm ||f (x)||∞ even in degenerate cases

||f (x)− P(x)||∞ is a degenerate case...
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Sollya (4)

Killer feature 4

Machine-efficient polynomial approximation

Remez’ minimax algorithm finds the best polynomial approximation
over the reals

But we need polynomials with machine coefficients

float, double, fixed-point, ...

Rounding Remez coefficients does not provide the best polynomial
among polynomial with machine coefficients.

Sollya does (almost).

this saves a few bits of accuracy
especially relevant for small precisions (FPGAs)
that’s how we get our polynomials

Nice number theory behind. And needs all the previous.
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6 guaranteed log polynomials on one slide

A sollya script that computes appproximations to the log of various qualities

f= log(1+y);

I=[-0.25;.5];

filename="/tmp/polynomials";

print("") > filename;

for deg from 2 to 8 do begin

p = fpminimax(f, deg,[|0,23...|],I, floating, absolute);

display=decimal;

acc=floor(-log2(sup(supnorm(p, f, I, absolute, 2^(-40)))));

print( " // degree = ", deg,

" => absolute accuracy is ", acc, "bits" ) >> filename;

print("#if ( DEGREE ==", deg, ")") >> filename;

display=hexadecimal;

print(" float p = ", horner(p) , ";") >> filename;

print("#endif") >> filename;

end;
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Gappa : motivation

crlibm.pdf 5 years ago : 124 pages of this

1 yh2 = yh∗yh ; \
2 t s = yh2 ∗ ( s3 . d + yh2∗( s5 . d + yh2∗s7 . d ) ) ; \
3 Add12 (∗psh ,∗ p s l , yh , y l+t s∗yh ) ; \

Upon entering DoSinZero, we have in yh + yl an approximation to the ideal reduced value ŷ = x − k π
256

with a relative
accuracy εargred :

yh + yl = (x − k
π

256
)(1 + εargred) = ŷ(1 + εargred) (1)

with, depending on the quadrant, sin(ŷ) = ± sin(x) or sin(ŷ) = ± cos(x) and similarly for cos(ŷ). This just means that ŷ
is the ideal, errorless reduced value.
In the following we will assume we are in the case sin(ŷ) = sin(x), (the proof is identical in the other cases), therefore the
relative error that we need to compute is

εsinkzero =
(∗psh + ∗psl)

sin(x)
− 1 =

(∗psh + ∗psl)

sin(ŷ)
− 1 (2)

One may remark that we almost have the same code as we have for computing the sine of a small argument (without range
reduction). The difference is that we have as input a double-double yh + yl, which is itself an inexact term.

At Line 4, the error of neglecting yl and the rounding error in the multiplication each amount to half an ulp :

yh2 = yh2(1 + ε−53), with yh = (yh + yl)(1 + ε−53) = ŷ(1 + εargred)(1 + ε−53)
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Therefore
yh2 = ŷ2(1 + εyh2) (3)

with
εyh2 = (1 + εargred)2(1 + ε−53)3 − 1 (4)

Line 5 is a standard Horner evaluation. Its approximation error is defined by :

Pts(ŷ) =
sin(ŷ)− ŷ

ŷ
(1 + εapproxts)

This error is computed in Maple as previously, only the interval changes :

εapproxts =

∥∥∥∥∥ xPts(x)

sin(x)− x
− 1

∥∥∥∥∥
∞

We also compute εhornerts, the bound on the relative error due to rounding in the Horner evaluation thanks to the
compute horner rounding error procedure. This time, this procedure takes into account the relative error carried by yh2,
which is εyh2 computed above. We thus get the total relative error on ts :

ts = Pts(ŷ)(1 + εhornerts) =
sin(ŷ)− ŷ

ŷ
(1 + εapproxts)(1 + εhornerts) (5)
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The final Add12 is exact. Therefore the overall relative error is :

εsinkzero =
((yh⊗ ts)⊕ yl) + yh

sin(ŷ)
− 1

=
(yh⊗ ts + yl)(1 + ε−53) + yh

sin(ŷ)
− 1

=
yh⊗ ts + yl + yh + (yh⊗ ts + yl).ε−53

sin(ŷ)
− 1

Let us define for now
δaddsin = (yh⊗ ts + yl).ε−53 (6)

Then we have

εsinkzero =
(yh + yl)ts(1 + ε−53)2 + yl + yh + δaddsin

sin(ŷ)
− 1

Using (1) and (5) we get :

εsinkzero =
ŷ(1 + εargred)× sin(ŷ)−ŷ

ŷ
(1 + εapproxts)(1 + εhornerts)(1 + ε−53)2 + yl + yh + δaddsin

sin(ŷ)
− 1

To lighten notations, let us define

εsin1 = (1 + εapproxts)(1 + εhornerts)(1 + ε−53)2 − 1 (7)
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We get

εsinkzero =
(sin(ŷ)− ŷ)(1 + εsin1) + ŷ(1 + εargred) + δaddsin − sin(ŷ)

sin(ŷ)

=
(sin(ŷ)− ŷ).εsin1 + ŷ.εargred + δaddsin

sin(ŷ)

Using the following bound :

|δaddsin| = |(yh⊗ ts + yl).ε−53| < 2−53 × |y|3/3 (8)

we may compute the value of εsinkzero as an infinite norm under Maple. We get an error smaller than 2−67.
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4 pages for 3 lines of code...

Two years of experience showed that nobody (including myself) should
trust such a proof (and that nobody reads it anyway).

We wish we had an automatic tool that

takes a set of C files,

parses them,

and outputs “The overall error of the computation is ...”.

It’s hopeless, because the code doesn’t include

what it is supposed to compute

the knowledge used to build it
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Gappa

Written by Guillaume Melquiond, Gappa is a tool that

takes an input that closely matches your C file,

forces you to express what this code is supposed to compute

... and some numerical property to prove (expressed in terms of
intervals)

and eventually outputs a proof of this property suitable for
checking by Coq or HOL Light

gappa.gforge.inria.fr/

Florent de Dinechin, CITILab/Socrates MetaLibm updates 45

gappa.gforge.inria.fr/


CGPE

Code generation for polynomial evaluation

explores different parallelizations of a polynomial on a VLIW
processor

generates code and Gappa proof of the evaluation error

Used to generate the code for the division and square root of FLIP,
a Floating-Point Library for Integer Processors
(collaboration with ST Microelectronics)
Should help for vector code as well.

cgpe.gforge.inria.fr/
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Challenges of elementary function coding

Multiple targets

numerous architectures (Intel’s x86/Xeon-Phi, Kalray’s K1, ARM)
numerous constraints (throughput, latency, precision, memory
consumption)
numerous programming styles (e.g. vector versus scalar)

More function out there than the ones listed in C11 !

libm paradigm poorly addresses this complexity.

Metalibm : generate function code on demand for a given context
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The MetaLibm open-ended vision

For correctly rounded elementary functions
we needed to automate the development of code+proof

Now that this is (almost) done, we may open up the set of
functions/precisions/performance constraints

An ANR-funded project

metalibm/OpenEnded

genericity in input

metalibm/C11

focus on performance (match hand-coded libraries)
genericity in target processor
hand-code what we are unable (yet) to automate : range reductions,
floating-point trickery, ...

FPGAs, DSP filters for good measure
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1/ Christoph Lauter’s metalibm

Example : log(1 + x)

Two parameters

k from 1 to 13, defines table size
target accuracy, between 20 and 120 bits

1203 implementations, all formally checked

z axis : timings in arbitrary units
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Current experiments with this prototype

Connect it to the Dynamic Dictionary of Mathematical Functions

http://ddmf.msr-inria.inria.fr/

... to obtain code for a function defined by a differential equation +
limit conditions
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2/ MetalibmC11 : an ad-hoc approach

Philosophy : take good working C code, wrap it in printfs, then
generalize it.

low abstraction, but succes guaranteed

... with perf identical to hand-written code

All scripted in Python.
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Helper framework

All this is work in progress

A Processor class and its subclasses

encapsulates processor-specific code generation and tricks
still tinkering a lot there

A Format class and its subclasses

A Polynomial class that manages both approximation and
evaluation

A CFunction class for libm functions

automatically generates test programs
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Metaexp in one slide

Already 8 useful implementations, each for arbitrary accuracy p
(float/double, subnormals or not, Estrin or Horner)

A case study for structuration as a metaskeleton

Gappa

MPFR

SollyaRewriting steps library
Core

library
exponential_first_rr_fp(...) {....}

cody_waite_2(...) {...}

poly_horner_fp(...) {...}

Logarithm code generator

...

...

Exponential code generator

exponential_first_rr_fp(...);
if(...)

poly_horner_fp(...) {...}

else
...

...

exp logvariants variants

No Gappa generation yet
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Metalog in one slide

experiment with optimized for latency / optimized for throughput

using autovectorisation with gcc 4.7
works for single but not for double
( no %ymmi in the generated assembly ? ! ?)
Either AVX doesn’t replicate all SSE2 functions, or GCC is not ready

I’m not sure I understand how a degree-20 Horner polynomial is
evaluated in 37 cycles

Estrin evaluation would be useful here

but current implementation not modular enough
short-term TODO

No Gappa generation yet
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A glance at generated code

/* Exceptional case filtering, vectorizable */

minfty.ui = 0xff800000; /* minus infinity */

nan.ui = 0x7fc00000; /* nan */

ret_minfty = ((xx.ui & 0x7fffffff) == 0) ? minfty.f : 0.0f; /* x == +/-0 ?*/

ret_nan = (xx.ui > 0x80000000) ? nan.f : 0.0f; /* x<O ?*/

x_is_inf_or_nan = ((xx.ui & 0x7fffffff) >= 0x7f800000) ? xx.f : 0.0f; /* x inf or NaN ?*/

exn = ret_minfty + ret_nan + x_is_inf_or_nan; /* 0.0 if normal or subnormal, exception to return otherwise */

/* Now remains to add exn somewhere where it will propagate to the result */

x_subnormal = (xx.ui < 0x00800000) && (xx.ui > 0);

subnormal_scale = x_subnormal ? 0x1.p48f : 1.0f; /* scale mantissa*/

e_x = x_subnormal ? -127-48 : -127; /* ... and initialize exponent*/

xx.f *= subnormal_scale;

/* Now decompose x into fraction and exponent */

e_x += ((xx.i) >> 23) & ((1<<8)-1); /* extract exponent*/

fraction.i = (xx.i & 0x007fffff); /* extract fraction bits*/

adjust = (fraction.i>>22); /* first non-implicit bit of the fraction, tells us if 1.m > 1.5 */

fraction.i = fraction.i |0x3f800000; /* add the exponent of one */

fraction.i -= adjust << 23; /* if m>1.5, divide fraction by 2 (exact operation) */

e_x += adjust; /* and update exponent so we still have x = 2^e_x * fraction */
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/* Now back to floating-point */

y = fraction.f - 1.0f; /* Sterbenz-exact; may cancel but we don’t care */

y += exn; /* exn is either 0.0, or an inf or NaN that will propagate to the output */

/* Now y in [-0.25, 0.5], and we must evaluate log(1+y) */

/* Horner evaluation */

y2 = y*y;

p9 = c9;

p8 = c8 + y*p9;

p7 = c7 + y*p8;

p6 = c6 + y*p7;

p5 = c5 + y*p6;

p4 = c4 + y*p5;

p3 = c3 + y*p4;

p2 = c2 + y*p3;

p = y + y2*p2;

r = e_x*log_2 + p;

return r;
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Metatrigpi in one slide

sin(πx) and cos(πx) recommended by IEEE 754-2008

No costly range reduction
Correct rounding proven feasible

sincospif(float x, float *s, float *c)

computes both in one function

sincospio2f(float x, float *s, float *c)

computes sin(π2 x) and cos(π2 x) even faster

Developed in one day, with tests and all.
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Weakness of previous attempts

Lauter’s too generic, will miss many function-specific tricks we
need for performances.

Dinechin’s not abstract enough, misses “what’s being computed”.
As a consequence, automatic proof generation mostly hopeless.

Florent de Dinechin, CITILab/Socrates MetaLibm updates 59



3/ Le troisième sera le bon

New Metalibm developed by N. Brunie

DAG representation of the function, and of the implementation

abstract target description

disconnect description, optimization and code+proof generation
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Metalibm process

Backend

annotations

DAG description

Code Generation Proof Generation

Gappa ProofC codetest code
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DAG description

describe function implementation with operation nodes

VARIABLE, Constant
TableLoad, TableLoad HL
Addition, Multiplication, Modulo ...
Test, SpecOp, ExponentInsertion ...
ConditionBlock

DAG can be built two ways :

by composing constructors
by overloaded python expressions
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example of DAG description

vx = VARIABLE("x", precision = fpformat)

# reduced argument

red_x = NearestInt(vx / log(2), precision = int32, tag = "red_x")

# HIGH qnd LOW part log(2) generation

log2_hi = round(log(2), fpformat.sollya_name - 10, RN)

log2_lo = round(log(2) - log2_hi, fpformat.sollya_name, RN)

r = (vx - (red_x * log2_hi)) - red_x * log2_lo

r.set_attributes(tag = "r", exact = True)

red_int = Interval(-log(2)/2, log(2)/2)

poly = Polynomial.generate_fpminimax(exp(x), 5, red_int, [ML_Binary64]*6, absolute)

poly_scheme = PolySchemeGenerator.generate_horner(poly, r)

result = Return(ExponentInsertion(red_x) * poly_scheme)

backend_scheme = Backend(processor).backend_float(result, ML_Binary64)

source_code = CodeGenerator(processor).generate_expr(backend_scheme)
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The annotation system

to facilitate generated code reading

to optimize DAG

to enforce numerical constraints

Some examples of annotations :

tag, debug

precision

likely

exact, interval
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Backend processing

The main operations performed by the backend are :

instanciating every undetermined format

introducing necessary conversions

optimizations at the level of abstract operations

Other tasks include :

dynamic support library expansion

pre-vectorization processing

memoization is used for resource sharing
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Code Generation

generated from fully type-instanciated description

constants, tables and core code generation

several targets are available

support for processor-specific code generation

Gappa proof generation
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Processor-specific code generation

User−defined User−defined 

User−defined 

Generic C

CustomProcessor

Implementation

Search
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Challenges of vectorization

introduction or vector ISA : x86’s MMX, SSE (1, 2, 3, 4, 4.1, 4.2),
AVX (1 and 2), Xeon-Phi, ARM’s NEON

heavily reliant on branch uniformity

compiler support can be unreliable

generate branchless code

blending returns
extract most common path
generating callouts

use intrinsics to force use of vector instructions

Florent de Dinechin, CITILab/Socrates MetaLibm updates 68



All this still preliminary

Challenges :

Genericity versus ad-hoc efficiency (it is easy to write a generator
that works for only one function)

Draw the line between the compiler and Metalibm. Do not
reimplement a full compiler !

Open the code ! (some at Intel, some at Kalray, all locked for the
moment)
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Conclusion

Introduction : performance versus accuracy

Elementary function schizophrenia

The art of implementing elementary functions

Correctly rounded functions computing just right

Open-source tools for FP coders

Three metalibm prototypes

Conclusion
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Main messages

If you’re computing accurately enough, you’re probably computing
too accurately.

Are you able to express what your code is supposed to compute ?
If yes,

we can help you sort out the gory floating-point issues
we can provide functions computing just right for you
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My other research project

Computing just right for FPGAs

... but I was given another advertising slot for this.

e

x

√
x2+

y2+
z2

πx

sin
e x+

y

n∑
i=
0

x i

√
x logx

http://flopoco.gforge.inria.fr/
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Thank you for your attention

Introduction : performance versus accuracy

Elementary function schizophrenia

The art of implementing elementary functions

Correctly rounded functions computing just right

Open-source tools for FP coders

Three metalibm prototypes

Conclusion
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