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•  A HEP discovery in a nutshell	

•  Floating point in HEP algorithms	


–  Focus on mathematical functions	


•  Floating point in data	
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A big thanks goes to Vincenzo Innocente for contributing to these slides both with ideas and concrete 
material.	
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A HEP discovery 	

in a nutshell 	
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Bunch Crossing! 4 107 Hz

7x1012 eV ! Beam Energy
1034 cm-2 s-1 ! Luminosity
2835 ! Bunches/Beam 
1011 ! Protons/Bunch

7 TeV Proton Proton 
colliding beams 

Proton Collisions! 109 Hz

Parton Collisions 

New Particle Production ! 10-5  Hz 
(Higgs, SUSY, ....)!
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Selection of 1 event in 10,000,000,000,000

7.5 m  (25 ns)

 
6.5 TeV Proton Proton 
Colliding Beams 

6.5 x 1012 eV   Beam Energy* 
1034 cm-2 s-1   Instant. Luminosity 
2835    Bunches per Beam 
1011    Protons/Bunch 

* Estimate for the value at the machine re-start, not the official numbers 

Selection of 1 event in 10,000,000,000,000	
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MUON BARREL	


CALORIMETERS	

 	


Silicon Microstrips and	

Pixels	
 	


ECAL	
 Scintillating PbWO4	
 	

Crystals	
 	


 Cathode Strip Chambers (CSC)	

Resistive Plate Chambers (RPC)"

Drift Tube	
 	

Chambers (DT)	
 	
Resistive Plate	
 	


Chambers (RPC)"

SUPERCONDUCTING	
 	

COIL	


IRON YOKE	


TRACKERs	

MUON!

ENDCAPS	


Total weight : 12,500 t	

Overall diameter : 15 m	

Overall length : 21.6 m	

Magnetic field : 3.8 Tesla	


HCAL	
 Plastic scintillator	
 	

copper	
 	


 	
 sandwich	




•  HEP main data: statistically independent Events (particle collisions)	


•  Simulation, Reconstruction and Analysis: process “one Event at the time” 	

–  Event-level parallelism (success of the Grid!)	


–  Landscape is changing: advent of parallel data processing frameworks	


•  Applications composed of several algorithms to:	

–  Create simulated “raw” event data (event generation+simulation of passage of 

particles through matter+simulation of detector response to such energy depositions)	


–  Select and transform measured/simulated “raw” event data into 
“particles”	


•  Final result: statistical data (histograms, distributions, etc.)	

–  Typically: comparison between simulation and data	


•  All of these algorithms:	

–  Are mainly developed by “Physicists”	

–  May require additional “detector conditions” data (e.g. calibrations,	


Geometry, etc)	
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Raw data “definition”: 
readout of the ADC of 
the subdetectors’ 
frontends 

Processing tim
e 
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Monte Carlo 
Simulation follows 
the evolution of 
physics processes 
from collision to 
digital signals  

Reconstruction “goes back 
in time” from digital signals 
to the original particles 
produced in the collision 

Analysis compares (at 
statistical level) 
reconstructed events 
from real data with 
those from simulation  
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•  Signal/image processing	

–  DAC (including calibrations)	


–  Pattern recognition, “clustering”	


•  Topological problems	

–  Closest neighbour, minimum path, space partitioning	


•  Navigation/Avionics (Kalman filtering)	

–  Tracking in a force field in presence of “noise”	


–  Trajectory identification and prediction	


•  Gaming 	

–  “walk-through” complex 3D geometries	

–  Detection of  “collisions”	
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We are not alone and we 
should always look from 
inspiration outside! 
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Floating point	

in HEP algorithms	




•  Measurements themselves require modest precision (16,24 bits)	

–  Originally they were output of electronic frontends	


•  Geometry/Materials often known at per-cent level	

–  Cross section of reactions for simulation not rarely at ~10% level (e.g. 

hadronic)	

BUT	


•  Dynamic range, when converted in natural units, often requires a 
high precision FP representation	

–  Energy range from hundreds of KeV to hundreds of GeV: >109 !	

–  Position: μm over 20m (precise silicon tracker/detector length)	


•  Many conversions back and forth various coordinate/measurement 
systems	


•  Uncertainties manipulation (including correlations)	

–  Squared quantities: each transformation requires two matrix multiplications 	
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op instruction sse s sse d avx s avx d 

+,- ADD,SUB 3 3 3 3 

== 
< > 

COMISS CMP.. 2,3              2,3 2,3 2,3 

f=d 
d=f 

CVT.. 3 3 4 4 

|,&,^ AND,OR 1 1 1 1 

* MUL 5 5 5 5 

/,sqrt DIV, SQRT 10-14 10-22 21-29 21-45 

1.f/ ,   
1.f/sqrt        

RCP, RSQRT 5 7 

= MOV 1,3,… 1,3,… 1,4,…. 1,4,… 



•  Signal calibration	

–  Ideal for vectorisation (more about this later)	


•  Unfortunately lookups to calib constants required L	


•  Calib params may depend on “reconstructed quantities”	


•  “Geometry” transformations	

– Trigonometry (also log/exp – e.g. physicists like pseudo-

rapidity)	

– Small matrices (max 5x5, 6x6)	


•  Translation of formulas from literature (include all 
sorts of mathematical functions)	

– Energy losses, scattering	
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CMS reconstruction, spotlight on μ-operations	
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	  CPI	  (cycle	  per	  instruc1on):	  0.964	  
	  

	  	  	  	  	  	  	  	  	  	  	  	  load	  instruc1ons	  %:	  30.58%	  
	  	  	  	  	  	  	  	  	  	  	  store	  instruc1ons	  %:	  13.74%	  

branch	  instruc1ons	  %	  (approx):	  17.06%	  
resource	  stalls	  %	  (of	  cycles):	  30.63%	  
	  divider	  busy	  %	  (of	  cycles):	  12.11%	  

%	  of	  branch	  instr.	  mispredicted:	  2.25%	  
	  	  	  	  	  	  	  	  	  	  	  %	  of	  L3	  loads	  missed:	  2.09%	  

	  %	  of	  SIMD	  in	  all	  uops:	  19.22%	  	  
	  

breakdown:	  %of	  all	  uops	  	  	  %	  of	  all	  SIMD	  
PACKED_DOUBLE:	  	  	  	  	  	  	  	  	  	  0.663%	  	  	  	  	  3.449%	  
PACKED_SINGLE:	  	  	  	  	  	  	  	  	  0.613%	  	  	  	  	  	  3.190%	  

SCALAR_DOUBLE:	  	  	  	  	  	  	  13.485%	  	  	  70.159%	  
SCALAR_SINGLE:	  	  	  	  	  	  	  	  	  4.038%	  	  	  21.010%	  

•  Tons of loads/stores	

•  Divisions are evil for CPUs	

•  Extensive usage of doubles (only partially justified)	

•  Very little vectorisation!	
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Cut at 1% of the total runtime 

Obtained with IgProf 
http://igprof.org 

CMS performance optimisations may have made this measurement not actual	


•  No major offender	

•  Mathematical functions: 

clearly visible	


CMS simulation at 8 TeV	




•  Double precision often required to keep under 
control coordinate system transformations (in 
particular for the error matrices)	

– Develop more robust algorithms	

– Avoid back&forth	

– Choose (dynamically?) units (metrics) to avoid too large 

dynamic-ranges	


•  Tune precision to the required accuracy in 
parameterization	

– Use a math-lib allowing control of precision	
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•  Cost of a sin/cos/exp high and includes overhead of 
an indirect function call	

– Inline math functions	


•  Help vectorisation too	


•  Choice of the “right” precision	

•  Architecture specific implementation	

•  Significant time spent in range reductions and limit/

exceptions checking/setting	

– Our angles are ALL in [-pi,pi] range (sometime less)	

– Arguments of log/exp often in a limited range	


•  Special version for reduced ranges	
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With some exceptions, the default mathematical library used for HEP 
calculations is Libm (glibc implementation)	


Running on linux powered machines	


	

	


	

	


	


•  A rock-solid reference!	

•  Always focussed on accuracy rather than performance	

•  Not architecture specific, no limited ranges, no inlining, 

one implementation only	
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Different products are available, for example: 	


•  Intel’s SVML, IMF, MKL (commercial) 	


•  AMD Libm (free, closed source)	


•  VDT (VectoriseD maTh: free and open source)	


•  Yeppp… any other?	

	


	


	


	


	


Differences in the implementations but common underlying principle:	


	


	

Trade off between accuracy and speed of execution	
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•  An open source math library library, LGPL3 licence	

•  Inspired by the good old Cephes (and videogames)	


•  Single/Double precision of (a)sin, (a)cos, sincos, (a)tan, atan(2), log, exp 
and 1/sqrt	


•  Fast, approximate, inline 	

•  Symbols names are different from traditional ones: vdt::fast_<name>	


–  Do not force drop-in replacement, allow full control	


•  Functions usable in autovectorised loops	

–  Array signatures available: calculate on multiple elements conveniently	


•  C++ code only, no intrinsics: portability guaranteed	

–  The compiler adapts the code to the target architecture	


–  ARM, x86, GPGPUs, Xeon Phi, <future microarchitecture>	


	


https://svnweb.cern.ch/trac/vdt	
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•  VDT (and Cephes) double precision functions: Padé Approximants	


•  Single Precision: polynomials	


The “best” approximation of a function by a rational function of a given 
order à Better approximation than a truncated Taylor series	


Padé approximantimant of f(x) of order [m/n] is the function	
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Fnc.	   Libm	   VDT	   VDT-FMA	  
Exp	   102	   8	   5.8	  
Log	   33.3	   11.5	   9.8	  
Sin	   77.8	   16.5	   16.5	  
Cos	   77.6	   14.4	   13.2	  
Tan	   89.7	   10.6	   8.9	  
Asin	   21.3	   8.9	   6.9	  
Acos	   21.6	   9.1	   7.3	  
Atan	   15.6	   8.4	   6.7	  

Atan2	   36.4	   19.9	   18.9	  
Isqrt	   5.7	   4.3	   2.8	  

Double 
Precision 

Time in ns per value calculated	


Speedup 	

wrt Libm	
FMA: Fused Multiply Add d = a + b x c	


•  Operative input range: [-5k, 5k]	

•  Speedup factors of >5 not uncommon	

•  Effect of FMA clearly visible	


•  A waste not to profit from it!	

Testbed:  
SLC6-GCC48, i7-4770K at 3.50GHz Haswell 
glibc 2.12-1.107.el6_4.4 and VDT v0.3.6  
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Isqrt 

VDT+FMA 
VDT 
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Fnc.	   Scalar	   SSE	   AVX2	  
Exp	   8	   3.5	   1.7	  
Log	   11.5	   4.3	   2.2	  
Sin	   16.5	   6.2	   2.6	  
Cos	   14.4	   5.1	   2.3	  
Tan	   10.6	   4.4	   3.2	  
Asin	   8.9	   5.8	   5	  
Acos	   9.1	   5.9	   5.1	  
Atan	   8.4	   5.6	   5.1	  

Atan2	   19.9	   12.7	   8.4	  
Isqrt	   4.3	   1.8	   0.4	  

Double 
Precision 

Time in ns per value calculated	


Time per 
value 

calculated	
•  Effect of vectorisation clearly visible	
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•  Accuracy was measured comparing the 
results of Libm and VDT bit by bit 
with the same input	


•  Differences quoted in terms of most 
significant different bit	


•  In the end they are just 32 (64) bits which are 
properly interpreted (sign, exponent, 
mantissa)!	


	


	


	


MAX	  
VDT	  

AVG	  
VDT	  

Exp	   2	   0.14	  
Log	   2	   0.42	  
Sin	   2	   0.25	  
Cos	   2	   0.25	  
Tan	   2	   0.35	  
Asin	   2	   0.32	  
Acos	   8	   0.39	  
Atan	   1	   0.33	  
Atan2	   2	   0.27	  
Isqrt	   2	   0.45	  

Only slight difference present: already 
enough for many applications	


Double 
Precision 



11491 s 

10713 s 
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Courtesy of S. Wenzel 

VDT: A clear 
performance 
improvement!	




•  Can a “traditional” mathematical library be our best 
solution?	


•  What about a veritable “MetaLibM”?	

– Automatic generation of functions’ code	


– Platform specific implementation	

– Limitation in range	

– Choice of precision	


•  Specific approximations (polynomial/Pade) of full 
formulas?	
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double ms(double radLen, double m2, double p2) {  
  constexpr double amscon = 1.8496e-4;    // (13.6MeV)**2 
  double e2     = p2 + m2; 
  double beta2  = p2/e2; 
  double fact = 1.f + 0.038f*log(radLen);  fact *=fact; 
  double a = fact/(beta2*p2); 
  return amscon*radLen*a; 
} 

Already an  
approximation 

Material density,  
thickness, track angle 
Known at percent? 

float msf(float radLen, float m2, float p2) {  
  constexpr float amscon = 1.8496e-4;    // (13.6MeV)**2 
  float e2     = p2 + m2; 
   
  float fact = 1.f + 0.038f*dirtylogf<2>(radLen); fact /= p2; 
  fact *=fact; 
  float a = e2*fact; 
  return amscon*radLen*a; 
} 

2nd order polynomial by 
FdD 

Multiple scattering algorithm in CMS 

Exciting times for curious 
physicists {or,and} 
programmers: a single 
person can make the 
difference	
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•  0.1% accuracy corresponds to a difference of 13-14 bits 
•  Maximum error of the approximation is ~12 bits 
•  “dm” always positive 

float ref = ms(rl,m2,p2); 
float rp = ms(rl*1.001,m2,p2);   // 0.1% positive 
float rm = ms(rl*0.999,m2,p2);  // 0.1% negative 
float apx = msf(rl,m2,p2);   // fast approximation 
 
// look if approximation inside uncertainty-interval 
int dd = std::min(abs(diff(rm,ref)),abs(diff(rp,ref))); 
dd -= abs(diff(apx,ref)); // negative if apx-ref is larger than the uncer-interval 
dm = std::min(dm,dd); 
 
da = std::max(da,abs(diff(apx,ref)));  // maximum “error” by approx 
di = std::max(di,abs(diff(rp,ref))); 
di = std::max(di,abs(diff(rm,ref)));    // maximum uncertantly 
// ditto for minimum 

diff is in “bits” 

ref rm rp 

apx 
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G4double 
G4HadronCrossSections::GetCaptureCrossSection(const 
G4DynamicParticle* aParticle, G4int ZZ) 
 { […] 
   G4double ekx = std::max(ek, 1.e-9); 
   if (ekx != lastEkx) { 
     lastEkx = ekx; 
     lastEkxPower = std::pow(ekx*1.e6, 0.577); } 
 
   G4int izno = ZZ; 
   if (izno > 100) izno = 100;      // Not in GHESIG 
  izno = izno - 1;      // For array indexing 
  G4double sigcap = 11.12*cscap[izno]/lastEkxPower; 
 
sigcap = sigcap*millibarn; 
   return sigcap; } 

Argument of pow 
is at most 1e3. 

Probably double precision is 
not needed. 

Look-up table 
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•  Many algorithms coded in 
the ‘80 (even ‘70)	


•  Programmer’s heuristics 
still based on x87 math 
and sequential processing	


•  Advent of  “extreme” 
architectures (GPUs etc) 
is an opportunity to 
modernize algorithms for 
ALL architectures! 	


From the CERNLIB manual	


A paradigm shift?	
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Floating point	

in HEP data	




•  High granularity “naïve” object model	

–  Innermost loop often not the longest!	


•  Fragmentation in several libraries (plugin model)	

–   Link time optimisation does not help	


•  “Linear thinking” conditional code	

Vectorisation possible only with proper 

layouts in memory	

•  Only a massive redesign of data-structures (and not 

only algorithms) can make vectorisation effective	

– Not alone: see	


•  http://research.scee.net/files/presentations/gcapaustralia09/
Pitfalls_of_Object_Oriented_Programming_GCAP_09.pdf	


•  http://www.slideshare.net/DICEStudio/introduction-to-data-
oriented-design	
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We moved all of the HEP code from FORTRAN to C++.	

	

Now, are objects good?	


	

•  Well, yes	


•  And no	


Keyword: Data Oriented Design	


(re-design?) 	


Almost copied from Tony Albrecht: Pitfalls of Object Oriented Programming (see previous slide)  



•  Reduce precision within calculations requires in-
depth studies	


•  What about persistent representation of data 
structures (e.g. data on disk) ?	

– Maintain a full precision reference	

– Can we reduce precision of some data formats (e.g. 

analysis?)	

– Responsibility of the toolkit used for I/O	


•  Existing example:  Alice AOD data & ROOT	

– Massive usage of Double32_t opaque typedefs	

– Reduced precision on disk (e.g. float) but double in 

memory!	
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•  FP: big weight in HEP calculations (~20% of reconstruction)	

–  Mostly double: for no good reason sometimes?	

–  Not easy to vectorise as it stands	

–  Large use of std math-functions	


•  glibm: excellent reference, overkill for many applications?	


•  Opportunities for improvements	

–  Data Oriented (re-)Design	

–  Use parameterizations also for non-elementary functions 	

–  Use fast (less precise, limited-range) math-functions	


•  Plenty of appealing alternatives available!	


–  Use metrics allowing the use of floats	

–  Systematically verify required accuracy	


•  Face the algorithms: you can make the difference!	


–  Save disks/tapes: reduced precision in data persisted for analysis	
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•  ARM Cortex A9, arm-v7 Odroid	

•  VDT: Portable and very convenient	

•  Simple implementation pays also on a simple architecture! 	


Fnc.	   Libm	   VDT	  
Exp	   155	   71.4	  
Log	   153	   64.6	  
Sin	   202	   57.9	  
Cos	   199	   54.9	  
Tan	   290	   96.4	  
Asin	   99.2	   77.9	  
Acos	   95.4	   78.9	  
Atan	   127	   75.4	  

Atan2	   187	   89.7	  
Isqrt	   24.7	   52.0	  

Time in ns per value calculated	


Double 
Precision 


