
Introduction to HEP numerical computing
Challenges in Data reconstruction and simulation	

	

Danilo Piparo – CERN, PH-SFT
4th Openlab Numerical Computing Workshop

•  A HEP discovery in a nutshell	

•  Floating point in HEP algorithms	

–  Focus on mathematical functions	

•  Floating point in data	

5/5/2014 4th OL Numerical Computing WS 2

A big thanks goes to Vincenzo Innocente for contributing to these slides both with ideas and concrete
material.	

15/10/2013 Sw Engineering, Parallelism & Multi-Core 3

A HEP discovery 	

in a nutshell 	

5/5/2014 4th OL Numerical Computing WS 4

Bunch Crossing! 4 107 Hz

7x1012 eV ! Beam Energy
1034 cm-2 s-1 ! Luminosity
2835 ! Bunches/Beam
1011 ! Protons/Bunch

7 TeV Proton Proton
colliding beams

Proton Collisions! 109 Hz

Parton Collisions

New Particle Production ! 10-5 Hz
(Higgs, SUSY,)!

p pH

µ+

µ-

µ+

µ-

Z

Z
p p

e- νe

µ+

µ−

q

q

q

q
χ1

-

g~

~

χ2
0~

q~

χ1
0~

Selection of 1 event in 10,000,000,000,000

7.5 m (25 ns)

6.5 TeV Proton Proton
Colliding Beams

6.5 x 1012 eV Beam Energy*
1034 cm-2 s-1 Instant. Luminosity
2835 Bunches per Beam
1011 Protons/Bunch

* Estimate for the value at the machine re-start, not the official numbers

Selection of 1 event in 10,000,000,000,000	

4th OL Numerical Computing WS 5 5/5/2014

5/5/2014 4th OL Numerical Computing WS 6

MUON BARREL	

CALORIMETERS	

 	

Silicon Microstrips and	

Pixels	
 	

ECAL	
 Scintillating PbWO4	
 	

Crystals	
 	

 Cathode Strip Chambers (CSC)	

Resistive Plate Chambers (RPC)"

Drift Tube	
 	

Chambers (DT)	
 	
Resistive Plate	
 	

Chambers (RPC)"

SUPERCONDUCTING	
 	

COIL	

IRON YOKE	

TRACKERs	

MUON!

ENDCAPS	

Total weight : 12,500 t	

Overall diameter : 15 m	

Overall length : 21.6 m	

Magnetic field : 3.8 Tesla	

HCAL	
 Plastic scintillator	
 	

copper	
 	

 	
 sandwich	

•  HEP main data: statistically independent Events (particle collisions)	

•  Simulation, Reconstruction and Analysis: process “one Event at the time” 	

–  Event-level parallelism (success of the Grid!)	

–  Landscape is changing: advent of parallel data processing frameworks	

•  Applications composed of several algorithms to:	

–  Create simulated “raw” event data (event generation+simulation of passage of

particles through matter+simulation of detector response to such energy depositions)	

–  Select and transform measured/simulated “raw” event data into
“particles”	

•  Final result: statistical data (histograms, distributions, etc.)	

–  Typically: comparison between simulation and data	

•  All of these algorithms:	

–  Are mainly developed by “Physicists”	

–  May require additional “detector conditions” data (e.g. calibrations,	

Geometry, etc)	

5/5/2014 4th OL Numerical Computing WS 7

Raw data “definition”:
readout of the ADC of
the subdetectors’
frontends

Processing tim
e

5/5/2014 4th OL Numerical Computing WS 8

Monte Carlo
Simulation follows
the evolution of
physics processes
from collision to
digital signals

Reconstruction “goes back
in time” from digital signals
to the original particles
produced in the collision

Analysis compares (at
statistical level)
reconstructed events
from real data with
those from simulation

5/5/2014 4th OL Numerical Computing WS 9

5/5/2014 4th OL Numerical Computing WS 10

•  Signal/image processing	

–  DAC (including calibrations)	

–  Pattern recognition, “clustering”	

•  Topological problems	

–  Closest neighbour, minimum path, space partitioning	

•  Navigation/Avionics (Kalman filtering)	

–  Tracking in a force field in presence of “noise”	

–  Trajectory identification and prediction	

•  Gaming 	

–  “walk-through” complex 3D geometries	

–  Detection of “collisions”	

	

5/5/2014 4th OL Numerical Computing WS 11

We are not alone and we
should always look from
inspiration outside!

15/10/2013 Sw Engineering, Parallelism & Multi-Core 12

Floating point	

in HEP algorithms	

•  Measurements themselves require modest precision (16,24 bits)	

–  Originally they were output of electronic frontends	

•  Geometry/Materials often known at per-cent level	

–  Cross section of reactions for simulation not rarely at ~10% level (e.g.

hadronic)	

BUT	

•  Dynamic range, when converted in natural units, often requires a
high precision FP representation	

–  Energy range from hundreds of KeV to hundreds of GeV: >109 !	

–  Position: μm over 20m (precise silicon tracker/detector length)	

•  Many conversions back and forth various coordinate/measurement
systems	

•  Uncertainties manipulation (including correlations)	

–  Squared quantities: each transformation requires two matrix multiplications 	

5/5/2014 4th OL Numerical Computing WS 13

5/5/2014 4th OL Numerical Computing WS 14

op instruction sse s sse d avx s avx d

+,- ADD,SUB 3 3 3 3

==
< >

COMISS CMP.. 2,3 2,3 2,3 2,3

f=d
d=f

CVT.. 3 3 4 4

|,&,^ AND,OR 1 1 1 1

* MUL 5 5 5 5

/,sqrt DIV, SQRT 10-14 10-22 21-29 21-45

1.f/ ,
1.f/sqrt

RCP, RSQRT 5 7

= MOV 1,3,… 1,3,… 1,4,…. 1,4,…

•  Signal calibration	

–  Ideal for vectorisation (more about this later)	

•  Unfortunately lookups to calib constants required L	

•  Calib params may depend on “reconstructed quantities”	

•  “Geometry” transformations	

– Trigonometry (also log/exp – e.g. physicists like pseudo-

rapidity)	

– Small matrices (max 5x5, 6x6)	

•  Translation of formulas from literature (include all
sorts of mathematical functions)	

– Energy losses, scattering	

5/5/2014 4th OL Numerical Computing WS 15

CMS reconstruction, spotlight on μ-operations	

5/5/2014 4th OL Numerical Computing WS 16

	 CPI	 (cycle	 per	 instruc1on):	 0.964	
	

	 	 	 	 	 	 	 	 	 	 	 	 load	 instruc1ons	 %:	 30.58%	
	 	 	 	 	 	 	 	 	 	 	 store	 instruc1ons	 %:	 13.74%	

branch	 instruc1ons	 %	 (approx):	 17.06%	
resource	 stalls	 %	 (of	 cycles):	 30.63%	
	 divider	 busy	 %	 (of	 cycles):	 12.11%	

%	 of	 branch	 instr.	 mispredicted:	 2.25%	
	 	 	 	 	 	 	 	 	 	 	 %	 of	 L3	 loads	 missed:	 2.09%	

	 %	 of	 SIMD	 in	 all	 uops:	 19.22%	 	
	

breakdown:	 %of	 all	 uops	 	 	 %	 of	 all	 SIMD	
PACKED_DOUBLE:	 	 	 	 	 	 	 	 	 	 0.663%	 	 	 	 	 3.449%	
PACKED_SINGLE:	 	 	 	 	 	 	 	 	 0.613%	 	 	 	 	 	 3.190%	

SCALAR_DOUBLE:	 	 	 	 	 	 	 13.485%	 	 	 70.159%	
SCALAR_SINGLE:	 	 	 	 	 	 	 	 	 4.038%	 	 	 21.010%	

•  Tons of loads/stores	

•  Divisions are evil for CPUs	

•  Extensive usage of doubles (only partially justified)	

•  Very little vectorisation!	

5/5/2014 4th OL Numerical Computing WS 17

Cut at 1% of the total runtime

Obtained with IgProf
http://igprof.org

CMS performance optimisations may have made this measurement not actual	

•  No major offender	

•  Mathematical functions:

clearly visible	

CMS simulation at 8 TeV	

•  Double precision often required to keep under
control coordinate system transformations (in
particular for the error matrices)	

– Develop more robust algorithms	

– Avoid back&forth	

– Choose (dynamically?) units (metrics) to avoid too large

dynamic-ranges	

•  Tune precision to the required accuracy in
parameterization	

– Use a math-lib allowing control of precision	

	

	
 5/5/2014 4th OL Numerical Computing WS 18

•  Cost of a sin/cos/exp high and includes overhead of
an indirect function call	

– Inline math functions	

•  Help vectorisation too	

•  Choice of the “right” precision	

•  Architecture specific implementation	

•  Significant time spent in range reductions and limit/

exceptions checking/setting	

– Our angles are ALL in [-pi,pi] range (sometime less)	

– Arguments of log/exp often in a limited range	

•  Special version for reduced ranges	

	

5/5/2014 4th OL Numerical Computing WS 19

20

With some exceptions, the default mathematical library used for HEP
calculations is Libm (glibc implementation)	

Running on linux powered machines	

	

	

	

	

	

•  A rock-solid reference!	

•  Always focussed on accuracy rather than performance	

•  Not architecture specific, no limited ranges, no inlining,

one implementation only	

	

5/5/2014 4th OL Numerical Computing WS

5/5/2014 4th OL Numerical Computing WS 21

Different products are available, for example: 	

•  Intel’s SVML, IMF, MKL (commercial) 	

•  AMD Libm (free, closed source)	

•  VDT (VectoriseD maTh: free and open source)	

•  Yeppp… any other?	

	

	

	

	

	

Differences in the implementations but common underlying principle:	

	

	

Trade off between accuracy and speed of execution	

15/10/2013 Sw Engineering, Parallelism & Multi-Core 22

•  An open source math library library, LGPL3 licence	

•  Inspired by the good old Cephes (and videogames)	

•  Single/Double precision of (a)sin, (a)cos, sincos, (a)tan, atan(2), log, exp
and 1/sqrt	

•  Fast, approximate, inline 	

•  Symbols names are different from traditional ones: vdt::fast_<name>	

–  Do not force drop-in replacement, allow full control	

•  Functions usable in autovectorised loops	

–  Array signatures available: calculate on multiple elements conveniently	

•  C++ code only, no intrinsics: portability guaranteed	

–  The compiler adapts the code to the target architecture	

–  ARM, x86, GPGPUs, Xeon Phi, <future microarchitecture>	

	

https://svnweb.cern.ch/trac/vdt	

	

15/10/2013 Sw Engineering, Parallelism & Multi-Core 23

•  VDT (and Cephes) double precision functions: Padé Approximants	

•  Single Precision: polynomials	

The “best” approximation of a function by a rational function of a given
order à Better approximation than a truncated Taylor series	

Padé approximantimant of f(x) of order [m/n] is the function	

	

	

	

 	

	

	

	

	

15/10/2013 Sw Engineering, Parallelism & Multi-Core 24

Fnc.	 Libm	 VDT	 VDT-FMA	
Exp	 102	 8	 5.8	
Log	 33.3	 11.5	 9.8	
Sin	 77.8	 16.5	 16.5	
Cos	 77.6	 14.4	 13.2	
Tan	 89.7	 10.6	 8.9	
Asin	 21.3	 8.9	 6.9	
Acos	 21.6	 9.1	 7.3	
Atan	 15.6	 8.4	 6.7	

Atan2	 36.4	 19.9	 18.9	
Isqrt	 5.7	 4.3	 2.8	

Double
Precision

Time in ns per value calculated	

Speedup 	

wrt Libm	
FMA: Fused Multiply Add d = a + b x c	

•  Operative input range: [-5k, 5k]	

•  Speedup factors of >5 not uncommon	

•  Effect of FMA clearly visible	

•  A waste not to profit from it!	

Testbed:
SLC6-GCC48, i7-4770K at 3.50GHz Haswell
glibc 2.12-1.107.el6_4.4 and VDT v0.3.6

0

5

10

15

20
Exp

Log

Sin

Cos

Tan

Asin

Acos

Atan

Atan2

Isqrt

VDT+FMA
VDT

15/10/2013 Sw Engineering, Parallelism & Multi-Core 25

Fnc.	 Scalar	 SSE	 AVX2	
Exp	 8	 3.5	 1.7	
Log	 11.5	 4.3	 2.2	
Sin	 16.5	 6.2	 2.6	
Cos	 14.4	 5.1	 2.3	
Tan	 10.6	 4.4	 3.2	
Asin	 8.9	 5.8	 5	
Acos	 9.1	 5.9	 5.1	
Atan	 8.4	 5.6	 5.1	

Atan2	 19.9	 12.7	 8.4	
Isqrt	 4.3	 1.8	 0.4	

Double
Precision

Time in ns per value calculated	

Time per
value

calculated	
•  Effect of vectorisation clearly visible	

0

5

10

15

20
Exp

Log

Sin

Cos

Tan

Asin

Acos

Atan

Atan2

Isqrt
Scalar

SSE

AVX2

15/10/2013 Sw Engineering, Parallelism & Multi-Core 26

•  Accuracy was measured comparing the
results of Libm and VDT bit by bit
with the same input	

•  Differences quoted in terms of most
significant different bit	

•  In the end they are just 32 (64) bits which are
properly interpreted (sign, exponent,
mantissa)!	

	

	

	

MAX	
VDT	

AVG	
VDT	

Exp	 2	 0.14	
Log	 2	 0.42	
Sin	 2	 0.25	
Cos	 2	 0.25	
Tan	 2	 0.35	
Asin	 2	 0.32	
Acos	 8	 0.39	
Atan	 1	 0.33	
Atan2	 2	 0.27	
Isqrt	 2	 0.45	

Only slight difference present: already
enough for many applications	

Double
Precision

11491 s

10713 s

15/10/2013 Sw Engineering, Parallelism & Multi-Core 27

Courtesy of S. Wenzel

VDT: A clear
performance
improvement!	

•  Can a “traditional” mathematical library be our best
solution?	

•  What about a veritable “MetaLibM”?	

– Automatic generation of functions’ code	

– Platform specific implementation	

– Limitation in range	

– Choice of precision	

•  Specific approximations (polynomial/Pade) of full
formulas?	

	

5/5/2014 4th OL Numerical Computing WS 28

5/5/2014 4th OL Numerical Computing WS 29

double ms(double radLen, double m2, double p2) {
 constexpr double amscon = 1.8496e-4; // (13.6MeV)**2
 double e2 = p2 + m2;
 double beta2 = p2/e2;
 double fact = 1.f + 0.038f*log(radLen); fact *=fact;
 double a = fact/(beta2*p2);
 return amscon*radLen*a;
}

Already an
approximation

Material density,
thickness, track angle
Known at percent?

float msf(float radLen, float m2, float p2) {
 constexpr float amscon = 1.8496e-4; // (13.6MeV)**2
 float e2 = p2 + m2;

 float fact = 1.f + 0.038f*dirtylogf<2>(radLen); fact /= p2;
 fact *=fact;
 float a = e2*fact;
 return amscon*radLen*a;
}

2nd order polynomial by
FdD

Multiple scattering algorithm in CMS

Exciting times for curious
physicists {or,and}
programmers: a single
person can make the
difference	

5/5/2014 4th OL Numerical Computing WS 30

•  0.1% accuracy corresponds to a difference of 13-14 bits
•  Maximum error of the approximation is ~12 bits
•  “dm” always positive

float ref = ms(rl,m2,p2);
float rp = ms(rl*1.001,m2,p2); // 0.1% positive
float rm = ms(rl*0.999,m2,p2); // 0.1% negative
float apx = msf(rl,m2,p2); // fast approximation

// look if approximation inside uncertainty-interval
int dd = std::min(abs(diff(rm,ref)),abs(diff(rp,ref)));
dd -= abs(diff(apx,ref)); // negative if apx-ref is larger than the uncer-interval
dm = std::min(dm,dd);

da = std::max(da,abs(diff(apx,ref))); // maximum “error” by approx
di = std::max(di,abs(diff(rp,ref)));
di = std::max(di,abs(diff(rm,ref))); // maximum uncertantly
// ditto for minimum

diff is in “bits”

ref rm rp

apx

5/5/2014 4th OL Numerical Computing WS 31

G4double
G4HadronCrossSections::GetCaptureCrossSection(const
G4DynamicParticle* aParticle, G4int ZZ)
 { […]
 G4double ekx = std::max(ek, 1.e-9);
 if (ekx != lastEkx) {
 lastEkx = ekx;
 lastEkxPower = std::pow(ekx*1.e6, 0.577); }

 G4int izno = ZZ;
 if (izno > 100) izno = 100; // Not in GHESIG
 izno = izno - 1; // For array indexing
 G4double sigcap = 11.12*cscap[izno]/lastEkxPower;

sigcap = sigcap*millibarn;
 return sigcap; }

Argument of pow
is at most 1e3.

Probably double precision is
not needed.

Look-up table

5/5/2014 4th OL Numerical Computing WS 32

•  Many algorithms coded in
the ‘80 (even ‘70)	

•  Programmer’s heuristics
still based on x87 math
and sequential processing	

•  Advent of “extreme”
architectures (GPUs etc)
is an opportunity to
modernize algorithms for
ALL architectures! 	

From the CERNLIB manual	

A paradigm shift?	

15/10/2013 Sw Engineering, Parallelism & Multi-Core 33

Floating point	

in HEP data	

•  High granularity “naïve” object model	

–  Innermost loop often not the longest!	

•  Fragmentation in several libraries (plugin model)	

–  Link time optimisation does not help	

•  “Linear thinking” conditional code	

Vectorisation possible only with proper

layouts in memory	

•  Only a massive redesign of data-structures (and not

only algorithms) can make vectorisation effective	

– Not alone: see	

•  http://research.scee.net/files/presentations/gcapaustralia09/
Pitfalls_of_Object_Oriented_Programming_GCAP_09.pdf	

•  http://www.slideshare.net/DICEStudio/introduction-to-data-
oriented-design	

	

5/5/2014 4th OL Numerical Computing WS 34

5/5/2014 4th OL Numerical Computing WS 35

We moved all of the HEP code from FORTRAN to C++.	

	

Now, are objects good?	

	

•  Well, yes	

•  And no	

Keyword: Data Oriented Design	

(re-design?) 	

Almost copied from Tony Albrecht: Pitfalls of Object Oriented Programming (see previous slide)

•  Reduce precision within calculations requires in-
depth studies	

•  What about persistent representation of data
structures (e.g. data on disk) ?	

– Maintain a full precision reference	

– Can we reduce precision of some data formats (e.g.

analysis?)	

– Responsibility of the toolkit used for I/O	

•  Existing example: Alice AOD data & ROOT	

– Massive usage of Double32_t opaque typedefs	

– Reduced precision on disk (e.g. float) but double in

memory!	

5/5/2014 4th OL Numerical Computing WS 36

•  FP: big weight in HEP calculations (~20% of reconstruction)	

–  Mostly double: for no good reason sometimes?	

–  Not easy to vectorise as it stands	

–  Large use of std math-functions	

•  glibm: excellent reference, overkill for many applications?	

•  Opportunities for improvements	

–  Data Oriented (re-)Design	

–  Use parameterizations also for non-elementary functions 	

–  Use fast (less precise, limited-range) math-functions	

•  Plenty of appealing alternatives available!	

–  Use metrics allowing the use of floats	

–  Systematically verify required accuracy	

•  Face the algorithms: you can make the difference!	

–  Save disks/tapes: reduced precision in data persisted for analysis	

5/5/2014 4th OL Numerical Computing WS 37

5/5/2014 4th OL Numerical Computing WS 38

15/10/2013 Sw Engineering, Parallelism & Multi-Core 39

•  ARM Cortex A9, arm-v7 Odroid	

•  VDT: Portable and very convenient	

•  Simple implementation pays also on a simple architecture! 	

Fnc.	 Libm	 VDT	
Exp	 155	 71.4	
Log	 153	 64.6	
Sin	 202	 57.9	
Cos	 199	 54.9	
Tan	 290	 96.4	
Asin	 99.2	 77.9	
Acos	 95.4	 78.9	
Atan	 127	 75.4	

Atan2	 187	 89.7	
Isqrt	 24.7	 52.0	

Time in ns per value calculated	

Double
Precision

