Introduction to HEP numerical computing Challenges in Data reconstruction and simulation

Ath Openlab Numerical Computing Workshop

About this talk

- A HEP discovery in a nutshell
- Floating point in HEP algorithms
 - Focus on mathematical functions
- Floating point in data

A big thanks goes to Vincenzo Innocente for contributing to these slides both with ideas and concrete material.

A HEP discovery in a nutshell

Collisions at LHC: a summary

* Estimate for the value at the machine re-start, not the official numbers

5/5/2014

4th OL Numerical Computing WS

Typical "Onion structure"

The CMS experiment

H,A → ママ → two τ jets + X, 60 16

CALORIMETERS

Data acquisition and processing

- HEP main data: statistically independent Events (particle collisions)
- Simulation, Reconstruction and Analysis: process "one Event at the time"
 - **Event-level parallelism** (success of the Grid!)
 - Landscape is changing: advent of parallel data processing frameworks
- Applications composed of several algorithms to:
 - Create simulated "raw" event data (event generation+simulation of passage of particles through matter+simulation of detector response to such energy depositions)
 - Select and transform measured/simulated "raw" event data into "particles"
- Final result: statistical data (histograms, distributions, etc.)
 - Typically: comparison between simulation and data
- All of these algorithms:
 - Are mainly developed by "Physicists"
 - May require additional "detector conditions" data (e.g. calibrations,

Geometry, etc)

High Energy Physics analysis model

A well known example

A well known example

Analogies with Industry

Signal/image processing

- DAC (including calibrations)
- Pattern recognition, "clustering"
- Topological problems

We are not alone and we should always look from inspiration outside!

- Closest neighbour, minimum path, space partitioning

Navigation/Avionics (Kalman filtering)

- Tracking in a force field in presence of "noise"
- Trajectory identification and prediction

• Gaming

- "walk-through" complex 3D geometries
- Detection of "collisions"

Floating point in HEP algorithms

Accuracy and Precision

- Measurements themselves require modest precision (16,24 bits)
 - Originally they were output of electronic frontends
- Geometry/Materials often known at per-cent level
 - Cross section of reactions for simulation not rarely at ~10% level (e.g. hadronic)

BUT

- Dynamic range, when converted in natural units, often requires a high precision FP representation
 - Energy range from hundreds of KeV to hundreds of $GeV: > 10^9$!
 - Position: µm over 20m (precise silicon tracker/detector length)
- Many conversions back and forth various coordinate/measurement systems
- Uncertainties manipulation (including correlations)
 - Squared quantities: each transformation requires two matrix multiplications

FP Operations and their Costs

ор	instruction	sse s	sse d	avx s	avx d
+,-	ADD,SUB	3	3	3	3
== < >	COMISS CMP	2,3	2,3	2,3	2,3
f=d d=f	CVT	3	3	4	4
,&,^	AND,OR	1	1	1	1
*	MUL	5	5	5	5
/,sqrt	DIV, SQRT	10-14	10-22	21-29	21-45
1.f/ , 1.f/sqrt	RCP, RSQRT	5		7	
=	MOV	1,3,	1,3,	1,4,	1,4,

5/5/2014

Typical Applications of FP Operations

- Signal calibration
 - Ideal for vectorisation (more about this later)
 - Unfortunately lookups to calib constants required 😕
 - Calib params may depend on "reconstructed quantities"
- "Geometry" transformations
 - Trigonometry (also log/exp e.g. physicists like pseudorapidity)
 - Small matrices (max 5x5, 6x6)
- Translation of formulas from literature (include all sorts of mathematical functions)
 - Energy losses, scattering

A typical profile: Low Level

CMS reconstruction, spotlight on μ -operations

CPI (cycle per instruction): 0.964

load instructions %: 30.58% store instructions %: 13.74%

branch instructions % (approx): 17.06%
resource stalls % (of cycles): 30.63%
divider busy % (of cycles): 12.11%
% of branch instr. mispredicted: 2.25%

% of L3 loads missed: 2.09%

% of SIMD in all uops: 19.22%

breakdown: %of all	uops % o	f all SIMD
PACKED_DOUBLE:	0.663%	3.449%
PACKED_SINGLE:	0.613%	3.190%
SCALAR_DOUBLE:	13.485%	70.159%
SCALAR_SINGLE:	4.038%	21.010%

- Tons of loads/stores
- Divisions are evil for CPUs
- Extensive usage of doubles (only partially justified)
- Very little vectorisation!

A typical profile: High Level

CMS simulation at 8 TeV

Symbol name

Obtained with IgProf http://igprof.org

70		
4.98	36.22	G4Mag_UsualEqRhs::EvaluateRhsGivenB(double const*, dc
3.12	22.67	G4PhysicsVector::Value(double, unsigned long&) const
3.01	21.93	G4hPairProductionModel::ComputeDMicroscopicCrossSecti
2.45	17.86	G4ClassicalRK4::DumbStepper(double const*, double con
2.37	17.27	G4Navigator::LocateGlobalPointAndSetup(CLHEP::Hep3Vec
2.21	16.10	ieee754_exp
2.17	15.83	G4PolyconeSide::DistanceAway(CLHEP::Hep3Vector const&
1.93	14.03	<u>_init</u>
1.83	13.32	<pre>sim::Field::GetFieldValue(double const*, double*) con</pre>
1.30	9.44	G4ElasticHadrNucleusHE::HadrNucDifferCrSec(int, int,
1.25	9.12	G4UniversalFluctuation::SampleFluctuations(G4Material
1.25	9.07	ieee754 atan2
1.22	8.88	G4PropagatorInField::ComputeStep(G4FieldTrack&, doub
1.18	8.60	G4VEmProcess::PostStepGetPhysicalInteractionLength(G
1.18	8.55	G4VoxelNavigation::ComputeStep(CLHEP::Hep3Vector con
1.11	8.08	G4MagInt Driver::QuickAdvance(G4FieldTrack&, double c
1.11	8.07	G4MuPairProductionModel::ComputeDMicroscopicCrossSect
1.07	7.77	<u>G4SteppingManager::DefinePhysicalStepLength()</u>

No major offender

 Mathematical functions: clearly visible

Cut at 1% of the total runtime

CMS performance optimisations may have made this measurement not actual

5/5/2014

Total

Self

4th OL Numerical Computing WS

- Double precision often required to keep under control coordinate system transformations (in particular for the error matrices)
 - Develop more robust algorithms
 - Avoid back&forth
 - Choose (dynamically?) units (metrics) to avoid too large dynamic-ranges
- Tune precision to the required accuracy in parameterization

- Use a math-lib allowing control of precision

How Can We Improve: Math Lib

 Cost of a sin/cos/exp high and includes overhead of an indirect function call

– Inline math functions

- Help vectorisation too
- Choice of the "right" precision
- Architecture specific implementation
- Significant time spent in range reductions and limit/ exceptions checking/setting
 - Our angles are ALL in [-pi,pi] range (sometime less)
 - Arguments of log/exp often in a limited range
 - Special version for reduced ranges

How Can We Improve: Math Lib

With some exceptions, the default mathematical library used for HEP calculations is **Libm** (glibc implementation)

Running on linux powered machines

- A rock-solid reference!
- Always focussed on accuracy rather than performance
- Not architecture specific, no limited ranges, no inlining, one implementation only

A Selection of Alternatives

Different products are available, for example:

- Intel's SVML, IMF, MKL (commercial)
- AMD Libm (free, closed source)
- VDT (VectoriseD maTh: free and open source)
- Yeppp... any other?

Differences in the implementations but common underlying principle:

Trade off between accuracy and speed of execution

What is VDT?

- An **open source** math library library, LGPL3 licence
- Inspired by the good old Cephes (and videogames)
- Single/Double precision of (a)sin, (a)cos, sincos, (a)tan, atan(2), log, exp and I/sqrt
- Fast, approximate, inline
- Symbols names are different from traditional ones: vdt::fast_<name>
 Do not force drop-in replacement, allow full control
- Functions usable in autovectorised loops
 - Array signatures available: calculate on multiple elements conveniently
- C++ code only, no intrinsics: portability guaranteed
 - The compiler adapts the code to the target architecture
 - ARM, x86, GPGPUs, Xeon Phi, <future microarchitecture>

https://svnweb.cern.ch/trac/vdt

Single Precision: polynomials

The "best" **approximation of a function by a rational function** of a given order \rightarrow Better approximation than a truncated Taylor series

Padé approximantimant of f(x) of order [m/n] is the function

$$R(x) = \frac{\sum_{j=0}^{m} a_j x^j}{1 + \sum_{k=1}^{n} b_k x^k} = \frac{a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m}{1 + b_1 x + b_2 x^2 + \dots + b_n x^n}$$

Padé Approximants

Speed: VDT Vs Libm

 $A \rightarrow \forall \forall \forall \rightarrow \mathsf{two} \forall \mathsf{jets} + \mathsf{X}, 60 \mathsf{fb}^{\mathsf{T}}$

Fnc.	Libm	VDT	VDT-FMA	
Exp	102	8	5.8	
Log	33.3	11.5	9.8	
Sin	77.8	16.5	16.5	
Cos	77.6	14.4	13.2	
Tan	89.7	10.6	8.9	
Asin	21.3	8.9	6.9	ł
Acos	21.6	9.1	7.3	
Atan	15.6	8.4	6.7	
Atan2	36.4	19.9	18.9	
lsqrt	5.7	4.3	2.8	

Time in **ns** per value calculated

FMA: Fused Multiply Add $d = a + b \times c$

- Operative input range: [-5k, 5k]
- Speedup factors of >5 not uncommon
- Effect of FMA clearly visible
 - A waste not to profit from it!

Testbed: SLC6-GCC48, i7-4770K at 3.50GHz Haswell glibc 2.12-1.107.el6_4.4 and VDT v0.3.6

Speed: VDT Vectorisation

two tiets

Fnc.	Scalar	SSE	AVX2
Exp	8	3.5	1.7
Log	11.5	4.3	2.2
Sin	16.5	6.2	2.6
Cos	14.4	5.1	2.3
Tan	10.6	4.4	3.2
Asin	8.9	5.8	5
Acos	9.1	5.9	5.1
Atan	8.4	5.6	5.1
Atan2	19.9	12.7	8.4
lsqrt	4.3	1.8	0.4

Time in **ns** per value calculated

15/10/2013

Accuracy: An Example

- Accuracy was measured comparing the results of Libm and VDT bit by bit with the same input
- Differences quoted in terms of most significant different bit
- In the end they are just 32 (64) bits which are properly interpreted (sign, exponent, mantissa)!

Double		MAX	AVG
recision		VDT	VDT
	Ехр	2	0.14
	Log	2	0.42
	Sin	2	0.25
	Cos	2	0.25
	Tan	2	0.35
	Asin	2	0.32
	Acos	8	0.39
	Atan	1	0.33
	Atan2	2	0.27
	lsqrt	2	0.45

Only slight difference present: already enough for many applications

Alice Simulation: Switching to VDT

15/10/2013

Being More Ambitious

- Can a "traditional" mathematical library be our best solution?
- What about a veritable "MetaLibM"?
 - Automatic generation of functions' code
 - Platform specific implementation
 - Limitation in range
 - Choice of precision
- Specific approximations (polynomial/Pade) of full formulas?

How to Improve: Concrete example

Multiple scattering algorithm in CMS

double ms(double radLen, double m2, double p2) { constexpr double amscon = 1.8496e-4; // (13.6MeV)**2 Already an double e2 = p2 + m2; approximation double beta2 = p2/e2; double fact = 1.f + 0.038f*log(radLen); fact *=fact; Material density, double a = fact/(beta2*p2); thickness, track angle return amscon*radLen*a; Known at percent? float msf(float radLen, float m2, float p2) { constexpr float amscon = 1.8496e-4; // (13.6MeV)**2 2nd order polynomial by float e2 = p2 + m2;FdD float fact = $1.f + 0.038f^{dirtylogf} < 2 > (radLen); fact /= p2;$ Exciting times for curious fact *=fact; physicists {or,and} float a = e2*fact;programmers: a single return amscon*radLen*a; person can make the difference

The Accuracy of this Approximation

- 0.1% accuracy corresponds to a difference of 13-14 bits
- Maximum error of the approximation is ~12 bits
- "dm" always positive

How to Improve: Simulation

Modernisation!

I,A → でて → two τ jets + X, 60 fb⁻¹

From the CERNLIB manual

- Many algorithms coded in the '80 (even '70)
- Programmer's heuristics still based on x87 math and sequential processing
- Advent of "extreme" architectures (GPUs etc) is an opportunity to modernize algorithms for ALL architectures!

Title of program: VAVILOV

Catalogue number: AAUJ

Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland (see application form in this issue)

Computer: CDC 6600; Installation: CERN, Geneva

Operating system: CDC Scope

Programming language used: FORTRAN IV

High speed storage required: 3246 words

No. of bits in a word: 60

Overlay structure: None

No. of magnetic tapes required: None

Other peripherals used: Card reader, pine printer

No. of cards in combined program and test deck: 636

Card punching code: BCD

Keywords: Nuclear, Vavilov distribution, energy loss, thin absorber, random number generation.

A paradigm shift?

Floating point in HEP data

HEP Data Structures

- High granularity "naïve" object model

 Innermost loop often not the longest!
- Fragmentation in several libraries (plugin model)
 - Link time optimisation does not help
- "Linear thinking" conditional code

Vectorisation possible only with proper layouts in memory

- Only a massive redesign of data-structures (and not only algorithms) can make vectorisation effective – Not alone: see
 - <u>http://research.scee.net/files/presentations/gcapaustralia09/</u> <u>Pitfalls_of_Object_Oriented_Programming_GCAP_09.pdf</u>
 - <u>http://www.slideshare.net/DICEStudio/introduction-to-data-oriented-design</u>

 $H, A \rightarrow \tau \tau \rightarrow two \tau jets + X, 60 fb^{-1}$

We moved all of the HEP code from FORTRAN to C++.

Now, are objects good?

- Well, yes
- And no

Keyword: Data Oriented Design (re-design?)

OO Pitfalls

Almost copied from Tony Albrecht: Pitfalls of Object Oriented Programming (see previous slide) 5/5/2014 4th OL Numerical Computing WS

- Reduce precision within calculations requires indepth studies
- What about persistent representation of data structures (e.g. data on disk) ?
 - Maintain a full precision reference
 - Can we reduce precision of some data formats (e.g. analysis?)
 - Responsibility of the toolkit used for I/O
- Existing example: Alice AOD data & ROOT
 - Massive usage of Double32_t opaque typedefs

– Reduced precision on disk (e.g. float) but double in memory!

Take Away Message

- FP: big weight in HEP calculations (~20% of reconstruction)
 - Mostly double: for no good reason sometimes?

X. 60 16

- Not easy to vectorise as it stands
- Large use of std math-functions
 - glibm: excellent reference, overkill for many applications?
- Opportunities for improvements
 - Data Oriented (re-)Design
 - Use parameterizations also for non-elementary functions
 - Use fast (less precise, limited-range) math-functions
 - Plenty of appealing alternatives available!
 - Use metrics allowing the use of floats
 - Systematically verify required accuracy
 - Face the algorithms: **you** can make the difference!

- Save disks/tapes: reduced precision in data persisted for analysis

 $H, A \rightarrow \tau \tau \rightarrow two \tau jets + X, 60 fb'$

Speed: VDT On ARM

Fnc.	Libm	VDT
Exp	155	71.4
Log	153	64.6
Sin	202	57.9
Cos	199	54.9
Tan	290	96.4
Asin	99.2	77.9
Acos	95.4	78.9
Atan	127	75.4
Atan2	187	89.7
lsqrt	24.7	52.0

Time in **ns** per value calculated

- ARM Cortex A9, arm-v7 Odroid
- VDT: Portable and very convenient
- Simple implementation pays also on a simple architecture!

Double

Precision