Eurodamontals of Elaa	ting Doint Arithm	votic
I unuamentais of 1 loa	ting-roint Antinin	ietic
	una a lal	
Jeff A	rnoid	
5 May	/ 2014	

◆□ > ◆母 > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Agenda

- Part I Fundamentals
 - Motivation
 - Some properties of floating-point numbers
 - Standards
 - More about floating-point numbers
 - A trip through the floating-point numbers
- Part II Techniques
 - Error-Free Transformations
 - Techniques for Summation
 - Techniques for Multiplication
 - Techniques for Dot Product
 - Techniques for Polynomial Evaluation

A 3 3 4 4

Motivation

- Why is floating-point arithmetic important?
- Reasoning about floating-point arithmetic
- Why do standards matter?
- Techniques which improve floating-point
 - Accuracy
 - Versatility
 - Performance

A 10

→ 3 → < 3</p>

Why is Floating-point Arithmetic Important?

- It is ubiquitous in scientific computing
 - Most research in HEP can't be done without it
- We need to implement algorithms which
 - Get the best answers
 - Get the best answers quickly
 - Get the best answers all the time
 - Where "best" means the right answer for the situation and context
- A rigorous approach to floating-point arithmetic is seldom taught in programming courses
- Too many think floating-point is
 - approximate in some random, ill-defined sense
 - mysterious
 - can often be wrong

Reasoning about Floating-Point Arithmetic

Being able to reason about floating-point arithmetic is important because

- One can prove algorithms are correct
 - Or one can determine the conditions under which they fail
- One can prove algorithms are portable
- One can estimate the round-off error in calculations
- Hardware changes have made floating-point calculations appear to be less deterministic
 - SIMD instructions
 - Hardware threading

Accurate knowledge about these factors increases confidence in floating-point results

- - E - - E

Some Properties of Floating-Point Numbers

Floating-point numbers do not behave the same as the real numbers encountered in mathematics:

- The set of floating-point numbers does not form a field under the usual set of floating-point operations
- Some common rules of arithmetic are not always valid when applied to floating-point numbers
- Floating-point numbers are all rational numbers
 - but they are only a subset of the rationals
 - thus not all rational numbers are floating-point numbers
- There are only a finite number of floating-point numbers

Floating-Point Numbers are Rationals

Implications:

- The decimal equivalent of any finite floating-point value contains a finite number of non-zero digits
- The values of π , e, $\sqrt{2}$ etc cannot be represented exactly by a floating-point value

Approximating π

Consider

#include <cmath>
const float a = M_PI;
const double b = M_PI;

- The value of a is greater than π by $\sim 8.7 imes 10^{-8}$
- The value of b is less than π by $\sim 1.2 imes 10^{-16}$

・ 同 ト ・ ヨ ト ・ ヨ ト

-

How Many Floating-Point Numbers Are There?

- Single-precision: $\sim 4.3 \times 10^9$
- Double-precision: $\sim 1.8 imes 10^{19}$
- Number of protons circulating in LHC: $\sim 3.2 \times 10^{14}$

Standards

There have been three major standards affecting floating-point arithmetic:

- IEEE 754-1985 Standard for Binary Floating-Point Arithmetic
- IEEE 854-1987 Standard for Radix-Independent Floating-Point Arithmetic
- IEEE 754-2008 Standard for Binary Floating-Point Arithmetic
 - This is the current standard
 - It is also an ISO standard (ISO/IEC/IEEE 60559:2011)

・ 戸 ト ・ ヨ ト ・ ヨ

A Bit of History

• IEEE 754-1985

- Described binary arithmetic
- Specified single and double precision along with an "extended" format for each
- Single precision was required
- IEEE 854-1987
 - Described "radix-independent" arithmetic
 - Established constraints on
 - precision and exponent range
 - between various formats

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

A Bit of History

By 2000, revisions were needed

- New formats were being used
- New instructions were being introduced
- New algorithms were developed for computations which had previously been considered "too difficult" to implement and, thus, not standardized
 - Radix conversion
 - Correctly-rounded elementary functions
- There were ambiguities in the existing standards
- It was difficult to write portable code which met certain requirements of the standard

IEEE 754-2008 – A New Standard

- Merged IEEE 754-1985 and IEEE 854-1987
 - But tried not to invalidate hardware which conformed to IEEE 754-1985
- Standardized larger formats
 - For example, quad-precision format
- Standardized new instructions
 - For example, fused multiply-add (FMA)

From now on, we will only talk about IEEE 754-2008

Operations Specified by IEEE 754-2008

All these operations must return the correct finite-precision result using the current rounding mode

- Addition
- Subtraction
- Multiplication
- Division
- Remainder
- Square root

< ∃ >

Operations Specified by IEEE 754-2008

- Conversion to/from integer
 - · Conversion to integer must be correctly rounded
- Conversion to/from decimal strings
 - Conversions must be monotonic
 - Under some conditions, binary → decimal → binary conversions must be exact ("round-trip" conversions)

Rounding Modes in IEEE 754-2008

Round to nearest

- round to nearest even
 - in the case of ties, select the result with a significand which is even
 - required for binary and decimal
 - the default rounding mode for binary
- round to nearest away
 - required only for decimal
- round toward $+\infty$
- round toward $-\infty$
- round toward 0

/□ ▶ < 글 ▶ < 글

Special Values

• Zero

- zero is signed
- Infinity
 - infinity is signed
- NaN (Not a Number)
 - Quiet NaN
 - Signaling NaN
 - NaNs do not have a sign
 - afterall, they aren't a number

Subnormals

伺 ト イヨト イヨト

э

Exceptions Specified by IEEE 754-2008

- Underflow
 - Absolute value of a non-zero result is less than $\beta^{e_{\min}}$ (i.e., it is subnormal)
 - Some ambiguity: before or after rounding?
- Overflow
 - Absolute value of a result is greater than the largest finite value $2^{e_{max}}\times(2-2^{1-p})$ in binary
 - Result is $\pm\infty$
- Division by Zero
 - x/y where x is finite and non-zero and y = 0
- Inexact
 - The result, after rounding, is not the same as the infinitely-precise result

(4月) (1日) (日)

Exceptions Specified by IEEE 754-2008

- Invalid
 - An operand is a NaN
 - \sqrt{x} where x < 0
 - however, $\sqrt{-0} = -0$
 - $(\pm\infty)\pm(\pm\infty)$
 - $(\pm 0) \times (\pm \infty)$
 - (±0)/(±0)
 - $(\pm\infty)/(\pm\infty)$
 - some floating-point \rightarrow integer or decimal conversions

- **→** → **→**

Storage Format of a Binary Floating-Point Number

IEEE Name	Format	Size	W	р	e _{min}	e _{max}
Binary32	Single	32	8	24	-126	+127
Binary64	Double	64	11	53	-1022	+1023
Binary128	Quad	128	15	113	-16382	+16383

Notes:

- $E = e e_{min} + 1$
- p-1 will be addressed later

Formats Specified in IEEE 754-2008

Formats

- Basic Formats:
 - Binary with sizes of 32, 64 and 128 bits
 - Decimal with sizes of 64 and 128 bits
- Other formats:
 - Binary with a size of 16 bits
 - *p* = 11
 - $e_{min} = -14$, $e_{max} = +15$
 - Decimal with a size of 32 bits

Larger Formats in IEEE 754-2008

- Parameterized based on size k:
 - k must be a multiple of 32
 - $k \ge 128$
 - $p = k roundnearest(4 \times log_2(k)) + 13$

•
$$w = k - p$$

•
$$e_{max} = 2^{w-1} - 1$$

• Example: Binary1024

- p = 1024 40 + 13 = 997
- w = 27
- $e_{max} = +67108863$

同 ト イ ヨ ト イ ヨ ト

The Value of a Floating-Point Number

The value of a floating-point number is determined by four quantities:

- radix β
 - sometimes called the "base"
- sign $s \in \{0,1\}$
- exponent e
 - an integer such that $e_{min} \leq e \leq e_{max}$
- precision p
 - the digits are x_i , $0 \le i < p$, where $0 \le x_i < \beta$

The Value of a Floating-Point Number

The value of a floating-point number can be expressed as

$$x = (-)^s \beta^e \sum_{i=0}^{p-1} x_i \beta^{-i}$$

where the *significand* is

$$m = \sum_{i=0}^{p-1} x_i \beta^{-i}$$

with

 $0 \le m < \beta$

同 ト イ ヨ ト イ ヨ ト

The Value of a Floating-Point Number

The value of a floating-point number can also be written

$$x = (-)^{s} \beta^{e-p+1} \sum_{i=0}^{p-1} x_{i} \beta^{p-i-1}$$

where the *integral significand* is

$$M = \sum_{i=0}^{p-1} x_i \beta^{p-i-1}$$

and M is an integer such that

$$0 \le M < \beta^p$$

Requiring Uniqueness

$$x = (-)^s \beta^e \sum_{i=0}^{p-1} x_i \beta^{-i}$$

To make the combination of e and $\{x_i\}$ unique, x_0 must be non-zero if possible.

Otherwise, using binary radix ($\beta = 2$), 0.5 could be written as

•
$$2^{-1} \times 1 \cdot 2^{0}$$
 $(e = -1, x_{0} = 1)$
• $2^{0} \times 1 \cdot 2^{-1}$ $(e = 0, x_{1} = 1)$
• $2^{1} \times 1 \cdot 2^{-2}$ $(e = 1, x_{2} = 1)$
• ...

In other words: minimize the exponent

伺 ト イ ヨ ト イ ヨ ト

Subnormal Floating-Point Numbers

$$m = \sum_{i=0}^{p-1} x_i \beta^{-i}$$

- If m = 0, the value of the number is ± 0
- If *m* ≠ 0
 - If x_0 is non-zero, the number is a normal number
 - $1 \le m < \beta$
 - If x_0 is zero, the number is a subnormal number
 - 0 < m < 1
 - This is what happens if minimizing the exponent would cause it to go below *e_{min}*

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Why have Subnormal Floating-Point Numbers?

- Processing of subnormals can be difficult to implement in hardware
 - Software intervention may be required
- + Subnormals allow for "gradual underflow"
- + With subnormals, $a = b \Leftrightarrow a b = 0$
 - If a and b are floating-point numbers and a ≠ b, then a ⊖ b is guaranteed to be non-zero if subnormals exist

Why p-1?

- For normal numbers, x₀ is always 1
- For subnormal numbers and zero, x_0 is always 0
- An efficient storage format:
 - Don't store x_0 in memory; assume it is 1
 - Use a special exponent value to signal a subnormal or zero;
 - $e = e_{min} 1$ seems useful
 - thus E = 0 for both a value of 0 and for subnormals

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Transcendental and Algebraic Functions

The standard *recommends* the following functions be correctly rounded:

- e^x, e^x − 1, 2^x, 2^x − 1, 10^x, 10^x − 1
- $log_{\alpha}(\Phi)$ for $\alpha = e, 2, 10$ and $\Phi = x, 1 + x$
- $\sqrt{x^2 + y^2}, 1/\sqrt{x}, (1+x)^n, x^n, x^{1/n}$
- sin(x), cos(x), tan(x), sinh(x), cosh(x), tanh(x) and their inverse functions
- $\sin(\pi x), \cos(\pi x)$
- And more ...

Transcendental Functions

Why correct rounding may be difficult to accomplish in all cases

Consider 2^{0×1.e4596526bf94dp-10} in round-to-nearest

- The precise answer is 0x1.0053fc2ec2b537ffffffffffffffff...
- The result must be calculated to at least 114 bits to determine the correctly rounded result because it is very close to the midpoint between two floating-point numbers
 - the midpoint is 0x1.0053fc2ec2b5380...
- This is known as the "Table Maker's Dilemma"

We're Not Going to Consider Everything...

The rest of this talk will be limited to the following aspects of IEEE 754-2008:

- Binary32, Binary64 and Binary128 formats
 - The radix is thus 2: $\beta = 2$
 - This includes the formats handled by the SSE and AVX instruction sets
 - We will not consider any aspects of decimal arithmetic or the decimal formats
 - We will not consider "double extended" format
 - Also known as "IA32 x87" format
- We will always assume the rounding mode is round-to-nearest-even

Some Inconvenient Properties of Floating-Point Numbers

Let a, b and c be floating-point numbers. Then

- *a* + *b* may not be a floating-point number
 - a + b may not always equal $a \oplus b$
 - Similarly for the operations –, \times and /
 - Recall that floating-point numbers do not form a field
- $(a \oplus b) \oplus c$ may not be equal to $a \oplus (b \oplus c)$
 - Similarly for the operations $\ominus,$ \otimes and \oslash
- $a \otimes (b \oplus c)$ may not be equal to $(a \otimes b) \oplus (a \oplus c)$

Associativity

Consider

const double	a = +1.0E+300;	
const double	b = -1.0E + 300;	
const double	c = 1.0;	
double x = (a + b) + c; //	x is 1.0
double y = a	+ (b + c); //	y is 0.0

- The order of operations matters!
- So do the compiler and the compilation options used

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Distributivity

Consider

```
const double a = 10.0/3.0;
const double b = 0.1;
const double c = 0.2;
double x = a * (b + c);
// x is 0x1.000000000001p+0
double y = (a * b) + (a * c);
// y is 0x1.000000000000p+0
```

• Again, the order of operations, the compiler and the compilation options used all matter

・ 同 ト ・ ヨ ト ・ ヨ ト

Approximation Error

Consider

double	а	=	0.	1;	;	
double	b	=	0.	. 01	L;	
double	с	=	a	*	а	;

- The representation of a using round-to-nearest-even is 0x1.99999999999ap-4
- The value of a is greater than 0.1 by $\sim 5.6 \times 10^{-18}$ or ~ 0.4 ulps
- The representation of b using round-to-nearest-even is 0x1.47ae147ae147bp-7
- The value of b is greater than 0.01 by $\sim 2.1 \times 10^{-19}$ or ~ 0.1 ulps

- 4 同 6 4 日 6 4 日 6

Approximation Error

Consider

double a = 0.1; double b = 0.01; double c = a * a;

- The value of c is 0x1.47ae147ae147cp-7
- c is greater than b by 1 ulp or $\sim 1.7 imes 10^{-18}$
- c is greater than 0.01 by $\sim 1.9 imes 10^{-18} > 1$ ulp

・ 同 ト ・ ヨ ト ・ ヨ ト

・ 同 ト ・ ヨ ト ・ ヨ ト

э

 Positive zero

э

- 4 同 6 4 日 6 4 日 6

 $+0.0 + 2^{e_{min}} imes 2^{1-p} \ \sim 4.9 imes 10^{-324}$

Positive zero Smallest denormal > 0

All floating-point values are a multiple of this quantity

/⊒ > < ∃ >

Walking Through the Floating-Point Numbers

 $+0.0 + 2^{e_{min}} imes 2^{1-p}$

Positive zero Smallest denormal > 0

・ 同 ト ・ ヨ ト ・ ヨ ト

 $0x000ffffffffffffff +2^{e_{min}}(1-2^{1-p})$ Largest denormal > 0

Walking Through the Floating-Point Numbers

 $+0.0 + 2^{e_{min}} imes 2^{1-p}$

 $\begin{array}{l} \mbox{Positive zero} \\ \mbox{Smallest denormal} > 0 \end{array}$

0x000fffffffffff 0x001000000000000

$$+2^{e_{min}}(1-2^{1-p}) +2^{e_{min}} \sim 2.2 imes 10^{-308}$$

 $\begin{array}{l} \mbox{Largest denormal} > 0 \\ \mbox{Smallest normal} > 0 \end{array}$

/⊒ > < ∃ >

э

 $^{+0.0}_{+2^{e_{min}} imes 2^{1-p}}$

Positive zero Smallest denormal > 0

0x000fffffffffff 0x001000000000000

$$+2^{e_{min}}(1-2^{1-p})$$

 $+2^{e_{min}}$

 $\begin{array}{l} \mbox{Largest denormal} > 0 \\ \mbox{Smallest normal} > 0 \end{array}$

・ 同 ト ・ ヨ ト ・ ヨ ト

• • •

. . .

 $0x001ffffffffff +2^{e_{min}}(2-2^{1-p})$

-

. . .

Walking Through the Floating-Point Numbers

 $^{+0.0}_{+2^{e_{min}} imes 2^{1-p}}$

Positive zero Smallest denormal > 0

0x000ffffffffff 0x00100000000000000

$$+2^{e_{min}}(1-2^{1-p})$$

 $+2^{e_{min}}$

Largest denormal
$$> 0$$

Smallest normal > 0

伺 ト イヨト イヨト

0x001fffffffffff 0x0020000000000000

$$+2^{e_{min}}(2-2^{1-p})$$

 $+2^{e_{min}+1}$

э

. . .

. . .

Walking Through the Floating-Point Numbers

 $^{+0.0}_{+2^{e_{min}} imes 2^{1-p}}$

0x000ffffffffff 0x00100000000000000

$$+2^{e_{min}}(1-2^{1-p})$$

 $+2^{e_{min}}$

 $\begin{array}{l} \mbox{Positive zero} \\ \mbox{Smallest denormal} > 0 \end{array}$

 $\begin{array}{l} \mbox{Largest denormal} > 0 \\ \mbox{Smallest normal} > 0 \end{array}$

・ 同 ト ・ ヨ ト ・ ヨ ト

0x001fffffffffff 0x0020000000000000

$$+2^{e_{min}}(2-2^{1-p})$$

 $+2^{e_{min}+1}$

Ox7feffffffffff

 $+2^{e_{max}}(2-2^{1-p})$ Largest normal >0 $\sim 1.8 imes 10^{+308}$

. . .

. . .

Walking Through the Floating-Point Numbers

 $^{+0.0}_{+2^{e_{min}} imes 2^{1-p}}$

Positive zero Smallest denormal > 0

0x000ffffffffff 0x001000000000000000

$$+2^{e_{min}}(1-2^{1-p})$$

 $+2^{e_{min}}$

$$\begin{array}{l} \mbox{Largest denormal} > 0 \\ \mbox{Smallest normal} > 0 \end{array}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

0x001fffffffffff 0x0020000000000000

$$+2^{e_{min}}(2-2^{1-p})$$

 $+2^{e_{min}+1}$

0x7feffffffffff 0x7ff00000000000 $\begin{array}{ll} +2^{e_{max}}(2-2^{1-p}) & \mbox{Largest normal} > 0 \\ +\infty & \mbox{Positive infinity} \end{array}$

-

. . .

. . .

. . .

Walking Through the Floating-Point Numbers

 $^{+0.0}_{+2^{e_{min}} imes 2^{1-p}}$

Positive zero Smallest denormal > 0

0x000ffffffffff 0x001000000000000000

$$+2^{e_{min}}(1-2^{1-p})$$

 $+2^{e_{min}}$

Largest denormal
$$> 0$$

Smallest normal > 0

- 4 同 6 4 日 6 4 日 6

0x001fffffffffff 0x0020000000000000

$$+2^{e_{min}}(2-2^{1-p})$$

 $+2^{e_{min}+1}$

 $\begin{array}{ll} +2^{e_{max}}(2-2^{1-p}) & {\sf Largest normal} > 0 \\ +\infty & {\sf Positive infinity} \\ {\sf NaN} \end{array}$

0x7fffffffffffff

NaN

э

 Negative zero

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Walking Through the Floating-Point Numbers

 $-0.0 \\ -2^{e_{min}-p+1}$

Negative zero Smallest denormal < 0

 $0x800fffffffffffffff -2^{e_{min}}(1-2^{1-p})$ Largest denormal < 0

-0.0 $-2^{e_{min}-p+1}$ Negative zero Smallest denormal < 0

0x800fffffffffff 0x8010000000000000

$$-2^{e_{min}}(1-2^{1-p})$$

 $-2^{e_{min}}$

$$\begin{array}{l} \mbox{Largest denormal} < 0 \\ \mbox{Smallest normal} < 0 \end{array}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

• • •

. . .

0x801fffffffff -2

 $-2^{e_{min}}(2-2^{1-p})$

-

. . .

. . .

Walking Through the Floating-Point Numbers

000000000000000000000000000000	
0x <mark>800</mark> 000000000000000000000000000000000	

 $-0.0 \\ -2^{e_{min}-p+1}$

Negative zero Smallest denormal < 0

0x800ffffffffff 0x801000000000000000

$$-2^{e_{min}}(1-2^{1-p})$$

 $-2^{e_{min}}$

$$\begin{array}{l} \mbox{Largest denormal} < 0 \\ \mbox{Smallest normal} < 0 \end{array}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

0x801fffffffffff 0x8020000000000000

$$-2^{e_{min}}(2-2^{1-p})$$

 $-2^{e_{min}+1}$

 $0xffefffffffff -2^{e_{max}}(2-2^{1-p})$ Largest normal < 0

-

. . .

. . .

Walking Through the Floating-Point Numbers

000000000000000000000000000000	
0x800000000000000000000000000000000000	

 $-0.0 \\ -2^{e_{min}-p+1}$

Negative zero Smallest denormal < 0

0x800ffffffffff 0x801000000000000000

$$-2^{e_{min}}(1-2^{1-p})$$

 $-2^{e_{min}}$

$$\begin{array}{l} \mbox{Largest denormal} < 0 \\ \mbox{Smallest normal} < 0 \end{array}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

0x801fffffffffff 0x8020000000000000

$$-2^{e_{min}}(2-2^{1-p})$$

 $-2^{e_{min}+1}$

Oxffeffffffffff Oxff00000000000000 $\begin{array}{ll} -2^{e_{max}}(2-2^{1-p}) & {\sf Largest normal} < 0 \\ -\infty & {\sf Negative infinity} \end{array}$

. . .

. . .

. . .

Walking Through the Floating-Point Numbers

0x800000000000000000 0x800000000000000001

$$-0.0 \\ -2^{e_{min}-p+1}$$

Negative zero Smallest denormal < 0

0x800fffffffffffff 0x8010000000000000

$$-2^{e_{min}}(1-2^{1-p})$$

 $-2^{e_{min}}$

$$\begin{array}{l} \mbox{Largest denormal} < 0 \\ \mbox{Smallest normal} < 0 \end{array}$$

* E > < E >

0x801fffffffffff 0x8020000000000000

$$-2^{e_{min}}(2-2^{1-p})$$

 $-2^{e_{min}+1}$

 $-2^{e_{max}}(2-2^{1-p})$

Oxffefffffffffff Oxfff0000000000000 0xfff0000000000001

Largest normal < 0Negative infinity $-\infty$ NaN

Oxfffffffffffffff

NaN

-

Bibliography

- IEEE, *IEEE Standard for Floating-Point Arithmetic*, IEEE Computer Society, August 2008.
- D. Goldberg, *What every computer scientist should know about floating-point arithmetic*, ACM Computing Surverys, 23(1):5-47, March 1991.
- J.-M. Muller et al, *Handbook of Floating-Point Arithmetic*, Birkäuser, Boston, 2010.

	Walking

Questions

◆□▶ ◆御▶ ◆注▶ ◆注▶ ─ 注