
 

Floating -Point Mini-lab 
 
The exercises all have a makefile. gcc is the default compiler. If you define CXX=icc on the 
make command line, the icc compiler will be used to build the target. The default target is 
all, which builds all the files required in the particular exercise. There is also a realclean 
target to delete all the files created.   
 
NOTE:  you must build the realclean target before switching compilers. A typical 
sequence might be 
 
make # build with gcc 
# work on the exercise 
# save any files which you way want later; e.g., executables 
make realclean # clean before switching compilers 
make CXX=icc # build using icc 
# work on the exercise 
# save any files which you way want later 
make CXX=icc realclean # remove icc-created files 
 

Exercise 01 – Muller 
This is a perverse example constructed by Jean-Michel Muller.  See section 1.3.2 of 
"Handbook of Floating-Point Arithmetic". The series should converge to 6 for the initial 
values 𝑢0 =  2 and 𝑢1 =  −4. However, the computation converges to 100 in all cases. 
 
For an analysis of what happens, see §5 in "How Futile are Mindless Assessments of 
Roundoff in Floating-Point Computation?" by W. Kahan at: 
http://www.eecs.berkeley.edu/~wkahan/Mindless.pdf. 
 
The series is: 

𝑢0 =  2 
𝑢1 =  −4 

𝑢𝑛 =  111 −
1130
𝑢𝑛−1

 +
3000

𝑢𝑛−1 ∗ 𝑢𝑛−2
 

 
Note that all the constants are small integers which can be represented exactly as floating-
point numbers. The general solution for the recurrence is 
 

         𝑢𝑛 =
 𝑎 ∗ 100𝑛−1 +  𝑏 ∗ 6𝑛+1 +  𝑐 ∗ 5𝑛+1

 𝑎 ∗ 100𝑛 +  𝑏 ∗ 6𝑛 +  𝑐 ∗ 5𝑛
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where 𝑎, 𝑏 and 𝑐 depend on the initial values 𝑢0 and 𝑢1. If 𝑎 ≠ 0, the limit for 𝑛 → ∞ is 
100, but if 𝑎 = 0, and 𝑏 ≠ 0, the limit is 6. 
 
If 𝑢0 =  2 and 𝑢1 =  −4, then 𝑎 = 0, 𝑏 =  −3, 𝑐 =  4 and the limit should be 6. 
 
However the program doesn't compute 6.  It computes 100! 
 
Running instructions: 

• enter 33 (or more) for 𝑛 
• enter 2 for 𝑢0 
• enter -4 for 𝑢1 

 
You should see output such as the following: 
 
n = 32 
u0 = 2 
u1 = -4 
Computation from 3 to n: 
u3=18.5 
u4=9.378378378378379 
u5=7.8011527377521688 
u6=7.1544144809753334 
u7=6.8067847369248113 
u8=6.592632768721792 
u9=6.4494659340539329 
u10=6.3484520607466237 
u11=6.2744386627281159 
u12=6.2186967685821628 
u13=6.1758538558153901 
u14=6.1426271704810063 
u15=6.1202487045701588 
u16=6.1660865595980994 
u17=7.2350211655349312 
u18=22.062078463525793 
u19=78.575574887872236 
u20=98.349503122165359 
u21=99.898569266182903 
u22=99.993870988902785 
u23=99.999630387286345 
u24=99.99997773067949 
u25=99.999998659216686 
u26=99.999999919321809 
u27=99.999999995147761 
u28=99.99999999970828 
u29=99.999999999982464 
u30=99.999999999998934 
u31=99.999999999999929 
u32=99.999999999999986 
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The problem is caused by the computed value of 𝑢4: it is slightly in error. The exact value of 
𝑢4 should be 9.3783783783783783784.  Thus, each succeeding 𝑢𝑛 is incorrect:  the errors 
accumulate and grow as the recursion calculation proceeds.  The expansion being calculated 
actually corresponds to a slightly different problem: one with a small non-zero value for a.  
Thus, the limit should be 100. 
 
This is a typical example of the fact that often an algorithm when implemented in finite-
precision floating-point arithmetic solves a slightly different problem than from which it was 
derived mathematically. 

Exercise 02 – Rump 
This is an example due to S. M. Rump.  See section 1.3.2 of "Handbook of Floating-Point 
Arithmetic" for references and more details. 
Running instructions: 

• build and run the executable for float, double and __float128 data types. The 
shell script DoAll does this. 

• Compare the results. 
• Repeat using icc (there is a DoAll-icc script) and compare the results with those for 

gcc. 
The expression should evaluate to -0.827396….  However, regardless of the precision used, 
this result is never obtained. 
 
For analyses of what happens, see the following references (Google is your friend): 

• E. Low and W. Walster.   Rump's example revisited.  Reliable Computing 8(3):245-
248, 2002. 

• Cuyt, B. Verdonk, S. Becuwe and P. Kuterna.  A remarkable example of catastrophic 
cancellation unraveled.  Computing, 66:309-320, 2001. 

• Also see §5 in "How Futile are Mindless Assessments of Roundoff in Floating-Point 
Computation ?" by W. Kahan at http://www.eecs.berkeley.edu/~wkahan/Mindless.pdf 

Exercise 03 – Quadratic 
This directory contains a simple program which solves the equation 

𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 

for its real roots.  It does so in a very numerically naïve way. 
 
Compile the program and fill in this table (where 𝑥+ and 𝑥− are the roots found) using 
results from the naïve version: 
 

𝑎 𝑏 𝑐 𝑥+ 𝑥− 𝑓(𝑥+) 𝑓(𝑥−) 

+1 +2000 -3     

+2 -4000 -1     

+5 +8000 +2     
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You should calculate the values of 𝑓(𝑥+) and 𝑓(𝑥−) by hand or with a calculator. Verify 
your results. 
 
Study the values of the roots as displayed by the program. You should notice that the two 
roots are very different in magnitude; the ratio of their magnitudes is ~106. This is usually 
an indication of an ill-conditioned problem. Notice also that the low-order hex digits of the 
smaller root are usually repeated digits, often 0. This is caused by catastrophic cancellation 
in the calculation. 
 
Now try the “improved” version of the program. (It is created by compiling the same 
source file with –D_IMPROVED.) Notice that the smaller root is now calculated more 
accurately and that the value of 𝑓(𝑥𝑠𝑚𝑎𝑙𝑙𝑒𝑟) is closer to 0. 
 
Solving the quadratic equation more accurately provides a simple example of how 
catastrophic cancellation can be removed from a problem algebraically. 
 
The roots are given by 

𝑥± =  
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

= −
𝑏

2𝑎 �
1 ∓�1 −

4𝑎𝑐
𝑏2 �

 

 
Let 𝛿 = 4𝑎𝑐 𝑏2⁄ . Then 

𝑥+ = −
𝑏

2𝑎
�1 − √1 − 𝛿� 

 
When 𝑏2 ≫ 4𝑎𝑐 (i.e., 𝛿 ≪ 1), the calculation of 𝑥+ involves the taking the difference of two 
nearly equal computed quantities, resulting in catastrophic cancellation. 
 
We can rationalize the expression for  𝑥+ by multiplying numerator and denominator by 
1 + √1 − 𝛿 giving 
 

𝑥+ = −
𝑏

2𝑎
�

1 − (1 − 𝛿)
1 + √1 − 𝛿

� 

= −
2𝑐
𝑏 �

1
1 + √1 − 𝛿

� 

 
and 

𝑥− = −
𝑏

2𝑎
�1 + √1 − 𝛿� 

 
Now there is no catastrophic cancellation when 𝑥+ is computed if 𝑏2 ≫ 4𝑎𝑐. 

Exercise 04 – Summation 
This directory contains the files to build a program which sums a collection of double 
precision values in different ways.  The program also measures the execution time of each 
method. The summation techniques used include: 

• simple summation, with and without sorting 
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• summation using hyper-precision arithmetic 
• summation using quad-precision arithmetic 
• an error free transformation (EFT) which implements a highly accurate summation 

scheme without use of increased precision 
• vectorization 
• unrolled loops 
• OpenMP 
• reduction methods from Intel® Threading Building Blocks (TBB) 

 
First make some observations: 

• Build the program with both gcc and icc and run each version at least 3 times. 
• Are all the results always the same?  Are they the same with both compilers? 
• Which techniques give the same result each time? Which give results which vary? Can 

you explain why? 
• Look at the source files containing the various functions. Understand how the various 

techniques are implemented. 
• The main program demonstrates a method to measure elapsed time using OpenMP. 

Note that OpenMP is only used “computationally” in one of the summing routines. 
 
Which of the techniques do you think provides the “correct” value for the sum?  What do you 
think “correct” means in this case? 
 
Examine the way in which the pseudo-random numbers are generated. Can you correlate that 
information with the different results?  E.g., compare the “unroll by 4” results with the “unroll 
by 5” results. 
 
Identify the techniques which use multiple threads of execution or multiple partial sums.  
Why does this affect the results? 
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