
Techniques for Floating-Point Arithmetic

Jeff Arnold

5 May 2014

Jeff Arnold Techniques for Floating-Point Arithmetic 1

Agenda

• Part I – Fundamentals
• Motivation
• Some properties of floating-point numbers
• Standards
• More about floating-point numbers
• A trip through the floating-point numbers

• Part II – Techniques
• Error-Free Transformations
• Multiplication
• Summation
• Dot Product
• Polynomial Evaluation

Jeff Arnold Techniques for Floating-Point Arithmetic 2

Notation

• Floating-point operations are written
• ⊕ addition
• 	 subtraction
• ⊗ multiplication
• � division

• a⊕ b represents the floating-point addition of a and b
• a and b are floating-point numbers
• the result is a floating-point number
• in general, a⊕ b 6= a + b

• A generic floating-point operation on a is written ◦(x)

Jeff Arnold Techniques for Floating-Point Arithmetic 3

Error-Free Transformations

An error-free transformation (EFT) is an algorithm which
transforms a (small) set of floating-point numbers into another
(small) set of floating-point numbers of the same precision without
any loss of information.

f (a, b) 7−→ g(s, t)

Example:

An EFT for addition determines floating-point numbers s and t
from the floating-point numbers a and b such that a + b = s + t
where s = (a⊕ b). Thus, t is a floating-point number which is
equal to the rounding error of the floating-point addition.

Jeff Arnold Techniques for Floating-Point Arithmetic 4

Error-Free Transformations

EFTs exist for

• Addition: a + b = (a⊕ b) + t

• Multiplication: a× b = (a⊗ b) + t

• Splitting: a = s + t

EFTs are most useful when they can be implemented only using
operations in the current working precision.

Additional EFTs can be derived by composition. For example, an
EFT for dot products makes use of those for addition and
multiplication.

Jeff Arnold Techniques for Floating-Point Arithmetic 5

An EFT for Addition: FastTwoSum

Compute a + b = s + t where

• |a| ≥ |b|
• s = a⊕ b

• t is a floating-point number

void

FastTwoSum(const double a, const double b,

double* s, double* t)

{ // No unsafe optimizations!

*s = a + b;

*t = b - (*s - a);

return;

}

Jeff Arnold Techniques for Floating-Point Arithmetic 6

An EFT for Addition: TwoSum

Compute a + b = s + t where

• s = a⊕ b

• t is a floating-point number

void

TwoSum(const double a, const double b,

double* s, double* t)

{ // No unsafe optimizations!

*s = a + b;

double z = *s - a;

*t = (a - (*s - z)) + (b - z);

return;

}

Jeff Arnold Techniques for Floating-Point Arithmetic 7

EFTs for Addition

• A realistic implementation of FastTwoSum requires a branch
and 3 floating-point opertions

• TwoSum takes 6 floating-point operations but requires no
branches

• Thus TwoSum is usually faster on pipelined (e.g., modern)
processors

• The algorithm used in TwoSum is valid in radix 2 even if
underflow occurs (i.e., if subnormals are available)

Jeff Arnold Techniques for Floating-Point Arithmetic 8

Precise Splitting Algorithm

• Given a floating-point number x , determine the floating-point
numbers xh and xl such that x = xh + xl

• For δ ≤ p, where δ is a parameter,
• The signficand of xh fits in p − δ digits
• The signficand of xl fits in δ digits
• δ is typically chosed to be dp/2e

• No information is lost in the transformation

• This scheme is known variously as Veltkamp’s algorithm or
the Veltkamp-Dekker algorithm

Jeff Arnold Techniques for Floating-Point Arithmetic 9

Precise Splitting EFT

void

Split(const double x, const int delta ,

double* x_h , double* x_l)

{ // No unsafe optimizations!

double c = (double)((1UL << delta) + 1);

*x_h = (c * x) + (x - (c * x));

*x_l = x - x_h;

return;

}

Jeff Arnold Techniques for Floating-Point Arithmetic 10

Precise Multiplication

• Dekker’s algorithm

• Given floating-point numbers a and b, determine
floating-point numbers s and t such that a× b = s + t where
s = a⊗ b

Jeff Arnold Techniques for Floating-Point Arithmetic 11

Precise Multiplication EFT

#define DELTA 27 // For Binary64

void

Mult(const double a, const double b,

double* s, double* t)

{ // No unsafe optimizations!

double a_high , a_low , b_high , b_low;

Split(a, DELTA , &a_high , &a_low);

Split(b, DELTA , &b_high , &b_low);

*s = a * b;

*t = -*s + a_high * b_high;

*t += a_high * b_low;

*t += a_low * b_high;

*t += a_low * b_low;

return;

}
Jeff Arnold Techniques for Floating-Point Arithmetic 12

Summation Techniques

• Traditional

• Sorting and Insertion

• Compensated

• Distillation

• Multiple Accumulators

• Reference: Higham: Accuracy and Stability of Numerical
Algorithms

Jeff Arnold Techniques for Floating-Point Arithmetic 13

Summation Techniques

Condition number:

Csum =

∑
|xi |

|
∑

xi |

• If Csum is not too large, the problem is not ill-conditioned and
traditional methods may be sufficient

• If Csum is too large, we need to have results appropriate to a
higher precision without actually using a higher precision

• Obviously, if higher precision is readily available, use it

Jeff Arnold Techniques for Floating-Point Arithmetic 14

Traditional Summation

s =
n−1∑
i=0

xi

double

Sum(const double* x, const unsigned int n)

{ // No unsafe optimizations!

double sum = x[0]

for(int i = 1; i < n; i++) {

sum += x[i];

}

return;

}

Jeff Arnold Techniques for Floating-Point Arithmetic 15

Sorting and Insertion

• Reorder the operands
• By value or magnitude
• Increasing or decreasing

• Insertion
• First sort by magnitude
• Remove x1 and x2 and compute their sum
• Insert that value into the list keeping the list sorted
• Repeat until only one element is in the list

• Many Variations
• If lots of cancellations, sorting by decreasing magnitude may

be better
• Sterbenz’ lemma

Jeff Arnold Techniques for Floating-Point Arithmetic 16

Compensated Summation

• Based on FastTwoSum and TwoSum techniques

• Knowledge of the exact rounding error in a floating-point
addition is used to correct the summation

• Developed by William Kahan

Jeff Arnold Techniques for Floating-Point Arithmetic 17

Compensated (Kahan) Summation

double

Kahan(const double* x, const unsigned int n)

{ // No unsafe optimizations!

double s = x[0];

double t = 0.0;

for(int i = 1; i < n_values; i++) {

double y = x[i] - t;

double z = s + y;

t = (z - s) - y;

s = z;

}

return s;

}

Jeff Arnold Techniques for Floating-Point Arithmetic 18

Compensated Summation

Many variations known. Consult the literature:

• Kahan

• Knuth

• Priest

• Pichat and Neumaier

• Rump, Ogita and Oishi

• Shewchuk

• AriC project (CNRS/ENS Lyon/INRIA)

Jeff Arnold Techniques for Floating-Point Arithmetic 19

Other Summation Techniques

• Distillation
• Separate accumulators based on exponents of operands
• Additions are always exact until the accumulators are finally

summed

• Long Accumulators
• Emulate greater precision
• For example, double-double and triple-double

Jeff Arnold Techniques for Floating-Point Arithmetic 20

Choice of Summation Technique

• Performance

• Error Bound
• Is it (weakly) dependent on n?

• Condition Number
• Is it known?
• Is it difficult to determine?
• Some algorithms allow it to be determined simultaneously with

an estimate of the sum
• Permits easy evaluation of the suitability of the result

• No one technique fits all situations all the time

Jeff Arnold Techniques for Floating-Point Arithmetic 21

Dot Product

• Use of EFTs

• Recast to summation

• Compensated dot product

Jeff Arnold Techniques for Floating-Point Arithmetic 22

Dot Product

• Condition number:

Cdot product =
2
∑
|ai · bi |

|
∑

ai · bi |

• If C is not too large, a traditional algorithm can be used

• If C is large, more accurate methods are required

Jeff Arnold Techniques for Floating-Point Arithmetic 23

Dot Product

• The dot product of 2 n-dimensional vectors can be reduced to
computing the sum of 2n floating-point numbers

• split each element
• form products
• sum accurately

• Algorithms can be constructed such that the result computed
with precision p is as accurate as through the dot product was
computed in precision 2p and then rounded to p

• Consult the work of Ogita, Rump and Oishi

Jeff Arnold Techniques for Floating-Point Arithmetic 24

Polynomal Evaluation

• Horner’s method

• Use of EFTs

• Compensated

Jeff Arnold Techniques for Floating-Point Arithmetic 25

Polynomal Evaluation

Horner’s method

p(x) =
n∑

i=0

aix
i

where x and all ai are floating-point numbers

Jeff Arnold Techniques for Floating-Point Arithmetic 26

Polynomial Evaluation by Horner’s Method

double

Horner(const double* a,

const unsigned int n,

double x)

{

double p = a[n];

for (unsigned int i = n - 1; i >= 0; i--) {

p = p * x + a[i];

}

return p;

}

Jeff Arnold Techniques for Floating-Point Arithmetic 27

Use of EFTs in Horner’s Method

The Horner scheme is basically a combination of additions and
multiplications.

p = p * x + a[i];

Applying the EFTs for those operations is straight-forward if
tedious

Jeff Arnold Techniques for Floating-Point Arithmetic 28

Use of EFTs in Compensated Horner’s Method

Graillat, Langlois and Louvet have developed an algorithm using
TwoSum and Mult which computes

p =
n∑

i=0

aixi −

(
n−1∑
i=0

πixi +
n−1∑
i=0

σix
i

)

The first term is simply the result of a Horner’s evaluation.
The algorithm can be shown to be an EFT for Horner’s evaluation:

Horner = p +

(
n−1∑
i=0

πixi +
n−1∑
i=0

σix
i

)

Jeff Arnold Techniques for Floating-Point Arithmetic 29

Use of EFTs in Compensated Horner’s Method

Analysis of the algorithm shows that the result is the same as that
computed by a classical Horner’s evaluation with twice the
precision which is then rounded to the working precision.

Reference: Compensated Horner’s Scheme, S. Graillat, Ph.
Langlois, N. Louvet. Université de Perpignan Via Domitia research
report RR2005-04.

Jeff Arnold Techniques for Floating-Point Arithmetic 30

Bibliography

• J.-M. Muller et al, Handbook of Floating-Point Arithmetic,
Birkäuser, Boston, 2010.

• N.J. Higham, Accuracy and Stability of Numerical Algorithms
(2nd Edition), SIAM, Philadelphia, 2002.

• Publications from CNRS/ENS Lyon/INRIA/AriC project
(J.-M. Muller et al).

• Publications from Institut für Zuverlässiges Rechnen (Institute
for Reliable Computing), Technische Universität
Hamburg-Harburg (Siegfried Rump et al).

Jeff Arnold Techniques for Floating-Point Arithmetic 31

Questions

Jeff Arnold Techniques for Floating-Point Arithmetic 32

