Ideas for flavour studies with FCC-ee

Uli Haisch Oxford University

FCC-ee/TLEP physics workshop (TLEP7), 19-21 June 2014, CERN

B_s→ $\tau^+\tau^-$: The unbounded

 $Q_{S,AB} = (\bar{s}P_Ab)(\bar{\tau}P_B\tau)$ $Q_{V,AB} = (\bar{s}\gamma_\mu P_Ab)(\bar{\tau}\gamma^\mu P_B\tau)$

Apart from tensor operators all Lorentz structures are tested

B_s→ $\tau^+\tau^-$: The unbounded

 $B_s \rightarrow \tau^+ \tau^-$ best probe of scalar & vector operators of form $\overline{s} b \overline{\tau} \tau$

B_s→ $\tau^+\tau^-$: The unbounded

- No direct limit & indirect bound Br(B_s→τ⁺τ⁻) < 1.5% from B_{d,s} lifetime ratio can be evaded through tuning
- SM predictions for all $B_{d,s}$ → l^+l^- modes recently improved: Br $(B_s \rightarrow \tau^+ \tau^-) = 7.73 \cdot (1 \pm 6\%) \cdot 10^{-7}$

[Bobeth et al., 1311.0903]

 Challenging measurement at LHCb but a limit of O(10⁻³) should be reachable with LHC Run I dataset. Bound of similar strength should also be attainable at Belle II

[Mordá, talk at "Flavor of New Physics in b→s transitions"]

How well performs FCC-ee compared to LHCb/Belle II?

 $B_s \rightarrow \gamma \gamma$: Heavy to light b

1-particle reducible (1PR)

1-particle irreducible (1PI)

Ample room for exotic new physics entering via 1PI diagrams

$B_s \rightarrow \gamma \gamma$: Heavy to light

- Double-radiative decay also offers possibility to determine properties of B_s-meson light-cone distribution amplitude, in particular of its inverse moment λ_{Bs}
- Combining $B_s \rightarrow \gamma \gamma$ with $B \rightarrow \gamma l \nu$, $B_s \rightarrow \phi \gamma$, ... into global fit might allow to cancel common hadronic uncertainties

Further theoretical studies needed to strengthen physics case

One possible explanation provided by $\Delta C_9 \approx -1.5 \& \Delta C_{7,10} \approx 0$

Right amount of LUV if only vector coupling to $\mu^+\mu^-$ altered

Z'model based on gauged L_{μ} - L_{τ} addresses both anomalies

$B \rightarrow NI^{T}I$ anomalies: Second opinion

favoured by anomaly in τ decay

[Altmannshofer et al., 1403.1269]

opinion

excluded by LEP measurements of Z couplings

constraint from Z couplings would be notable improved by FCC-ee thereby shrinking allowed parameter space

FCC-ee can indirectly shed light on flavour anomalies

LFV: Using 10¹² Z decays

[Pich, 1310.7922]

$\operatorname{Br}(\mu^- \to X$	$(-) \cdot 10^{12}$	(90% CI	L)							
$e^-\gamma$	0.57	$e^{-}2\gamma$	72	$e^-e^-e^+$	1.0					
$\operatorname{Br}(\tau^- \to X$	(90% CL)									
$e^-\gamma$	3.3	$e^{-}e^{+}e^{-}$	2.7	$e^-\mu^+\mu^-$	2.7	$e^-e^-\mu^+$	1.5	$e^{-}\pi^{0}$	8.0	
$\mu^-\gamma$	4.4	$\mu^- e^+ e^-$	1.8	$\mu^-\mu^+\mu^-$	2.1	$\mu^-\mu^-e^+$	1.7	$\mu^-\pi^0$	11	
$e^-\eta$	9.2	$e^-\eta'$	16	$e^- ho^0$	1.8	$e^-\omega$	4.8	$e^-\phi$	3.1	
$\mu^-\eta$	6.5	$\mu^-\eta^\prime$	13	$\mu^- ho^0$	1.2	$\mu^-\omega$	4.7	$\mu^-\phi$	8.4	
e^-K_S	2.6	$e^{-}K^{*0}$	3.2	$e^-\bar{K}^{*0}$	3.4	$e^-K^+\pi^-$	3.1	$e^{-}\pi^{+}K^{-}$	3.7	
$\mu^- K_S$	2.3	$\mu^- K^{*0}$	5.9	$\mu^- \bar{K}^{*0}$	7.0	$\mu^- K^+ \pi^-$	4.5	$\mu^-\pi^+K^-$	8.6	
$e^-K_SK_S$	7.1	$e^-K^+K^-$	3.4	$e^-\pi^+\pi^-$	2.3					
$\mu^- K_S K_S$	8.0	$\mu^- K^+ K^-$	4.4	$\mu^-\pi^+\pi^-$	2.1					
$e^-f_0(980)$ -	$\rightarrow e^{-}\pi^{+}\pi^{-}$	_	3.2	$\mu^{-}f_{0}(980)$	$)) \rightarrow \mu^{-2}$	$\pi^+\pi^-$	3.4			
${\rm Br}({\rm Z} \to {\rm X}^0$	$) \cdot 10^{6}$	(95% CL)		and Take I in Beach						
$e^{\pm}\mu^{\mp}$	1.7	$e^{\pm}\tau^{\mp}$	9.8	$\mu^{\pm}\tau^{\mp}$	12			bounds	s fror	n DELPHI
$Br(B^0_{(s)} \to X^0) \cdot 10^8$ (95% CL)								& OPA	AL of	otained with
$B^0 \to e^{\pm} \mu^{\mp} 0.37 \qquad B^0_s \to e^{\pm} \mu^{\mp} 1.4$ 4									visibl	le Z decavs
$Br(\mu^- + N \to e^- + N) \cdot 10^{12}$ (90% CL)										
Au	0.7	Ti	4.3	Pb	46					

 $Z \rightarrow \tau l$ are most weakly limited lepton-flavour violation (LFV) modes

Improvement of bounds by 5 orders of magnitude seem possible

LFV: Using 10¹² Z decays

 $\delta_{LL}^{\tilde{\nu}\,12} \qquad \qquad \delta_{LL}^{\tilde{\nu}\,12} m_{\mu} \tan\beta \quad \delta_{LL(RR)}^{\tilde{\nu}\,12} m_{\mu} \tan\beta \qquad \delta_{LR}^{\tilde{\nu}\,12} m_{\tilde{\gamma},\tilde{Z}}$

for large mass insertions $\delta_{LL}^{\tilde{\nu}\,13}$ ($\delta_{LL}^{\tilde{\nu}\,23}$) & light sneutrinos of around 70 GeV one gets Br($Z \rightarrow \tau l$) ~ Br($\tau \rightarrow l\gamma$) = O(10⁻⁸)

 $\tau \rightarrow l\gamma$ bounds can by avoided allowing for largish $Z \rightarrow \tau l$ rates

LFV: Using 10¹² Z decays

[Illiana & Masip,0207328]

 10^{-7} 10^{-5} $BR(Z \to \tau \mu)$ $BR(\tau \to \mu \gamma)$ Present limit 10^{-6} GigaZ (a) $\tan \beta = 2, \ m_{\tilde{\chi}_1^+} = 76 \text{ GeV}$ a(b) $\tan \beta = 2, \ m_{\tilde{\chi}_1^+} = 96 \ \text{GeV}$ 10^{-7} 10^{-8} (c) $\tan \beta = 5, \ m_{\tilde{\chi}_1^+} = 82 \text{ GeV}$ (d) $\tan \beta = 5, \ m_{\tilde{\chi}_1^+} = 92 \text{ GeV}$ GigaZ 10^{-8} 10^{-9} 10^{-9} 80 160 180 80 100 120 140 200 140 160 180 100 120200 $m_{\tilde{\nu}}$ [GeV] $m_{\tilde{\nu}}$ [GeV]

Update studies of correlations between $Z \rightarrow \tau l \& \tau \rightarrow l\gamma$