Higgs tagging using ${\rm Z} \rightarrow {\rm q} \bar{\rm q}$ @ 250 GeV

Y. Haddad haddad@llr.in2p3.fr

LLR, École polytechnique, IN2P3-CNRS

June 20, 2014

Motivation

- ZH is the dominant Higgs production process @ $250 \text{ GeV } e^+e^-$ machine
- Signal topology: $e^+e^- \rightarrow Z^* \rightarrow ZH \rightarrow 2j + X$

•
$$M_H^2 = M_{jj}^{recoil} = (\sqrt{s} - E_Z)^2 - P_Z^2$$

- Model in dependent extraction of $g_{ZZH} \propto \sigma = N/(L \cdot \epsilon)$
- Reconstruct the M^{recoil} from the Z decay product only, without measuring the Higgs products.
- Can we exploit $Z \rightarrow jj$ decays ?
 - Increase the Higgs statistics $BR(Z \to q\bar{q}) \sim \rightarrow 70\%$ ($\sim 6\%$ for $Z \to ll$)
- Very difficult @250 GeV (ZZ/WW background)
 - $\bullet \rightarrow$ different Higgs efficiencies for different Higgs decay.
 - Almost model independent.

	Analysis		
0	•000	000000	

Analysis Strategy

- Jet clustering of the stable + visible particles (no smearing of the particle energy at this stage)
- Smearing of the reconstructed jet's energy
 - Energy : $\sigma(E_j)/E_j = \alpha$

• Momentum:
$$\sigma(p_j) = \left(\frac{E_j}{P_j}\right) \sigma(E_j) = \left(\frac{E_j^2}{P_j}\right) \alpha$$

- A $\alpha = 3\%$ is chosen.
- Selection of the jet pair compatible with Z boson \rightarrow the jet pair minimizing $D = |m_{jj} - m_Z|$
- Selection exploiting only (almost only) the kinimatics of the Z decay product.
- Analysis of the di-jet recoil mass spectrum.
- Only visible decays of Higgs are considered .

Analysis	
0000	
	-

MC Samples

- Main processes at 250 GeV: ZH, W^+W^- , ZZ, $Z \rightarrow q\bar{q}$
- For $q\bar{q}$ (Recoil) analysis \rightarrow the main background : $WW \rightarrow 2j + X, ZZ \rightarrow 2j + X$
- 2012 DBD MC Generator samples (WHIZARD-v1.95 Generator + pythia-v6 for hadronization)
 - includes ISR + Beamstrahlung
 - \rightarrow This analysis sould be better in TLEP case.
- Event weighting calculated for a processus "i" by $w_i = L \cdot \sigma_i / N_i$
- Weight for a given polarization:

 $w_i(e_R^-e_L^+) = (\frac{1+P(e^-)}{2})(\frac{1+P(e^+)}{2})$

	$N_{jet} \ge 2$	$\sigma [fb]$	N_{events}	weight
				$(L = 500 f b^{-1})$
	ZH(qq+X)	346.013	437368	0.395563
	WW(qqqq)	14874.3	1074111	6.92401
+	$WW(qql\nu)$	18781	1753663	5.35479
$e_L e_R$	ZZ(qqqq)	1402.06	1004632	0.697798
-	ZZ(qqll)	1422.14	1299591	0.547149
	Z(qq)	129149	1629438	39.6299
	ZH(qq+X)	221.952	267357	0.415085
	WW(qqqq)	136.357	136325	0.500117
+	$WW(qql\nu)$	172.733	158021	0.546551
$e_R e_L$	ZZ(qqqq)	604.971	603931	0.500861
	ZZ(qqll)	713.526	637256	0.559843
	Z(qq)	71272.8	1676503	21.2564

Analysis	
0000	

Jet Clustering

- No knowlege on the Higgs boson decay mode is employed in this analysis.
- Various topologies:
 - $ZH \rightarrow q\bar{q}b\bar{b}, q\bar{q}c\bar{c}, q\bar{q}gg, q\bar{q}\tau\tau \Rightarrow 4$ jets
 - $ZH \rightarrow q\bar{q}WW \Rightarrow$ 4-6 jets (including isolated charged leptons)
 - $ZH \rightarrow q\bar{q} + inv \Rightarrow 2$ jets
- Events cannot be forced into predifined number of jets
 ⇒ Higgs selection must be unbiased
- Event resolved in aribtray number of exclusif jets using:
 - Durham algorithm implemented in FastJet-v3.04 $y_{ij} = \frac{2\min\{E_i^2, E_j^2\}}{O} (1 - \cos \theta_{ij})$
 - Exclusive jet clustering with fixed-y_{cut}
- The Selected di-jet mass is fitted by a Voigtian p.d.f (Breit-Wigner⊗Gauss)
 - The $\chi 2$ vs $y_{cut} \rightarrow \min$ at $y_{cut} = 0.006$
- The $y_{cut} = 0.006$ is chosen for the further analysis.

Introduction	Analysis		
0	000●	000000	<u>.</u>

Full Simulation vs Fast Simulation

- Full simulation of ILD detector using the following configuration:
 - ECAL \rightarrow Si-Tungsten ECAL option
 - HCAL → Semi-Digital HCAL option
- The Reconstruction of the Particle-Flow-Object is done by PandoraPFA

• \Rightarrow Very preliminary

- Consider that each event is $ZZ \rightarrow q\bar{q}q\bar{q} (WW \rightarrow q\bar{q}q\bar{q}) \Rightarrow$ force jet-clustering into 4 jets
- for the ZZ veto \rightarrow choose jet pairing minimizing $\chi^2 = (m_{ij} m_Z)^2 + (m_{kj} m_Z)^2$

• for the WW veto \rightarrow choose jet pairing minimizing $\chi^2 = (m_{ij} - m_W)^2 + \left(m_{kj} - m_W\right)^2$

Cut on the selected pair masses (not on the recoil mass)

Yacine Haddad (LLR)

Preselection: $WW \rightarrow q\bar{q}l\nu$ veto

- Consider that each event is $WW \rightarrow q\bar{q}l\nu \Rightarrow$ force jet-clustering into 3 jets
- Choose jet pair closest to the W mass

Cut on the selected pair mass the corresponding recoil mass

Cut list

- WW/ZZ vetoes
- $|\cos \theta_j^Z| < 0.95$: (well measured jets)
- $E_Z/E_{vis} < 0.93$: (reduces off-shell $q\bar{q}$)
- $|\cos\theta_Z| < 0.7$: (all background peak on the forward direction)
- $\bullet \ | cos \theta_{thrust} | < 0.8$
- Sphericity > 0.1 : (reduces $q\bar{q}$)
- $83 GeV < m_{jj} < 100 GeV$
- $100 \text{GeV} < m_{jj}^{\text{recoil}} < 150 \text{GeV}$

 \rightarrow No clear peak but the measure of σ_{ZH} is possible

Cut list WW/ZZ vetoes • $|\cos \theta_i^Z| < 0.95$: (well measured jets) • $E_Z/E_{vis} < 0.93$: (reduces off-shell $q\bar{q}$) • $|\cos\theta_Z| < 0.7$: (all background peak on the forward direction) • $|\cos\theta_{thrust}| < 0.8$ • Sphericity > 0.1: (reduces $q\bar{q}$) • $83 \text{GeV} < m_{ii} < 100 \text{GeV}$ • $100 \text{GeV} < m_{ii}^{\text{recoil}} < 150 \text{GeV}$

 $\Delta(\sigma_{ZH})/\sigma_{ZH} \sim 1.4\%$

Cut list WW/ZZ vetoes • $|\cos \theta_i^Z| < 0.95$: (well measured jets) • $E_Z/E_{vis} < 0.93$: (reduces off-shell $q\bar{q}$) • $|\cos\theta_Z| < 0.7$: (all background peak on the forward direction) • $|\cos\theta_{thrust}| < 0.8$ • Sphericity > 0.1: (reduces $q\bar{q}$) • $83 \text{GeV} < m_{ii} < 100 \text{GeV}$ • $100 \text{GeV} < m_{ii}^{\text{recoil}} < 150 \text{GeV}$

 $\begin{array}{c} H \rightarrow \gamma \gamma \\ H \rightarrow \mu \mu \\ H \rightarrow Z \gamma \\ H \rightarrow Z \gamma \\ H \rightarrow W W \\ H \rightarrow b \overline{b} \\ H \rightarrow c \overline{c} \\ H \rightarrow g g \\ H \rightarrow \tau \tau \\ 0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1 \\ \mathcal{E}_{H \rightarrow X} \end{array}$

 $ar{arepsilon} \sim 44\% ~~ \Delta arepsilon \sim 2\%$

TLEP L=10000 fb⁻¹,P(e⁺,e⁻)=(0,0), BDTG>0.1, Preliminary

Cut list WW/ZZ vetoes • $|\cos \theta_i^Z| < 0.95$: (well measured jets) • $E_Z/E_{vis} < 0.93$: (reduces off-shell $q\bar{q}$) • $|\cos\theta_Z| < 0.7$: (all background peak on the forward direction) • $|\cos\theta_{thrust}| < 0.8$ • Sphericity > 0.1: (reduces $q\bar{q}$) • $83 \text{GeV} < m_{ii} < 100 \text{GeV}$ • $100 \text{GeV} < m_{ii}^{\text{recoil}} < 150 \text{GeV}$

TLEP L=10000 fb⁻¹,P(e⁺,e⁻)=(0,0), BDTG>0.1, Preliminary

 $\Delta(\sigma_{\rm ZH})/\sigma_{\rm ZH} \sim 1.4\%$

O	Analysis 0000	Event Selection	Conclusion
	MVA bas	ed selection	
Use of ROOTThe input vari	TMVA package $ ightarrow$ Booste ables are:	d Decision Tree (BDT)	
$ \begin{array}{c} m_{jj} \\ \cos \theta_Z \\ \bullet \ \Delta \theta_{12} \\ \bullet \ \Delta \phi_{12} \end{array} $: The invariant m : di-jet production : opening angle of : opening angle o	ass of the di-jet system 1 angle the di-jet f the di-jet is the transverse plan	
$ \Delta E_{10} $	· larger boost fro	$7 - nair \rightarrow larger iet energy spread$	

- $-\log_{10}(y_{23,34})$: Durham resolution parameters
- Train the BDT for combined backgrounds
- One BDT of each polarization $(e_B^- e_L^+ \text{ or } e_L^- e_B^+)$
 - The Gradient BDT (BDTG) is chosen, more powerful than the standard BDT.

O	Analysis	Event Selection	Conclusion
	MVA bas	ed selection	
 Use of ROOT The input vari 	TMVA package \rightarrow Booste	d Decision Tree (BDT)	
• The input value m_{jj} • $ \cos\theta_Z $: The invariant n : di-jet productio	nass of the di-jet system n angle i the di jet	
	: opening angle of : opening angle of : larger boost fro	f the di-jet is the transverse plan m Z-pair \rightarrow larger jet energy spread	

- $|\Delta E_{12}|$: larger boost from Z-pair \rightarrow larger jet (• $-\log_{10}(y_{23,34})$: Durham resolution parameters
- Train the BDT for combined backgrounds
- One BDT of each polarization $(e_B^- e_L^+ \text{ or } e_L^- e_B^+)$
 - The Gradient BDT (BDTG) is chosen, more powerful than the standard BDT.

MVA based selection

 \rightarrow Cut on the BDTG output >0.1 \rightarrow More significance

MVA based selection

MVA based selection

Event Selection

MVA based selection

Selection

Process	N_{tot}	N_{sel}	$\sim \varepsilon_{sel}$
$ZH \to q\bar{q} + X$	354140	76172	0.21
$WW \rightarrow q\bar{q}q\bar{q}$	605418	14546	0.02
$WW \rightarrow q\bar{q}l\nu$	1045940	6287	< 0.01
$ZZ \rightarrow q\bar{q}q\bar{q}$	805200	36332	0.04
$ZZ \rightarrow q\bar{q}ll$	1067834	12751	0.01
$Z \to q\bar{q}$	1794082	2696	< 0.01

- Large background rejection (< 4%)
- Signal efficiency $\sim 21\%$

Conclusion & Outlook

- An model independent analysis on the $ZH\to q\bar{q}+X$ at $10000fb^{-1}$ TLEP with $P(e^+,e^-)=(0,0)$ is possible
- Uses of both background vetoes and MVA based selection reduces a large fraction of background.
- Good significance : $\Delta(\sigma_{ZH})/\sigma_{ZH}\sim 1.12\%$ with the very similar efficiencies for different Higgs decay modes ($\sim 21\%)$
- The uses of the "realistic" TLEP beam parameters could improve the results (reduction of beamstrahlung)
- Next :
 - Combination with other channels.
 - Include a dedicated analysis for $H \to i n v$