Search of resonant s-channel Higgs production at FCC-ee

FCC-ee physics workshop Geneva, 19-20th June 2014

<u>David d'Enterria</u>, G. Wojcik (CERN) R. Aleksan (Saclay)

Resonant s-channel $e^+e^- \rightarrow H$ production

■ Resonant Higgs production considered so far only for muon collider: $\sigma(\mu\mu\rightarrow H) \sim 70 \text{ pb.}$ Tiny g_{Hee} Yukawa coupling \Rightarrow Tiny $\sigma(ee\rightarrow H)$

$$\frac{g_{H\mu\mu}}{g_{Hee}} \propto \frac{m_{\mu}^2}{m_e^2} = 4.28 \times 10^4$$

BR($H\rightarrow e^+e^-$)~5.3·10⁻⁹ (decay unobservable)

Н

$$\sigma(\,{\rm e^{+}}\,{\rm e^{-}}\!\to H\,) = \frac{4\pi\Gamma_{H}^{2}Br(H\,\to\,{\rm e^{+}}\,{\rm e^{-}})}{\left(\hat{s}-M_{H}^{2}\right)^{2}+\Gamma_{H}^{2}M_{H}^{2}} \sim \text{1.64 fb (m}_{\rm H}\text{=125 GeV, }\Gamma_{\rm H}\text{=4.2 MeV)}$$

■ Huge luminosities available at FCC-ee:

In theory, with $L_{int} \sim 6 \text{ ab}^{-1}$ (4 exps./year)

FCC-ee running at H pole mass would produce O(10.000) H bosons.

With reduced beam energy spread & with reduced backgrounds:

- → Electron Yukawa coupling measurable?
- → Higgs width measurable (threshold scan)?
- → Separation of possible nearly-degen. H's?

Resonant s-channel e⁺e⁻ → H production

■ Resonant Higgs production considered so far only for muon collider: $\sigma(\mu\mu\rightarrow H)\sim 70~\text{pb}$. Tiny g_{Hee} Yukawa coupling \Rightarrow Tiny $\sigma(\text{ee}\rightarrow H)$

$$\frac{g_{H\mu\mu}}{g_{Hee}} \propto \frac{m_{\mu}^2}{m_e^2} = 4.28 \times 10^4$$

BR($H\rightarrow e^+e^-$)~5.3·10⁻⁹ (decay unobservable)

$$\sigma(\,{\rm e^{+}}\,{\rm e^{-}}\!\to H\,) = \frac{4\pi\Gamma_{H}^{2}Br(H\,\to\,{\rm e^{+}}\,{\rm e^{-}})}{\left(\hat{s}-M_{H}^{2}\right)^{2}+\Gamma_{H}^{2}M_{H}^{2}} \sim \text{1.64 fb (m}_{\rm H}\text{=125 GeV, }\Gamma_{\rm H}\text{=4.2 MeV)}$$

Huge luminosities available at FCC-ee:

In theory, with $L_{int}\sim 6$ ab⁻¹ (4 exps./year)

FCC-ee running at H pole mass would produce O(10.000) H bosons.

With reduced beam energy spread & with reduced backgrounds:

- → Electron Yukawa coupling measurable?
- → Higgs width measurable (threshold scan)?
- → Separation of possible nearly-degen. H's?

Visible Higgs decays at FCC-ee(H/2)

Decays of a 125 GeV Standard-Model Higgs boson

- 2-jet final-states (bb,cc,gg) swamped^(*) by $e^+e^- \rightarrow Z^*, \gamma^* \rightarrow q\overline{q}, \sigma \sim O(100 \text{ pb})$
- 4-jet final-states (WW*,ZZ*) swamped^(*) by $e^+e^- \rightarrow Z^*, \gamma^* \rightarrow q\overline{q}(gg), \sigma \sim O(1pb)$ $e^+e^- \rightarrow WW^*, ZZ^*, \sigma \sim O(20fb)$
- τ - τ decays swamped^(*) by e⁺e⁻ \rightarrow Z*, γ * \rightarrow τ - τ , σ ~O(10 pb)
- Rare decays, ZZ(II), $\gamma\gamma$, $Z\gamma$... ~0 counts
- (*) Some cases to be studied in more detail, to be added in combined decays analyses
- Cleanest channels: WW*(2j,lv), WW*(2l2v) with $\sigma = 78$ ab, 37 ab. dominant continuum background $e^+e^- \rightarrow WW^*$ with $\sigma \sim O(5 \text{ fb})$
- In pure leptonic final-state $WW^*(2|2v)$ we can exploit different lepton angular correlations from spin-0 decays into $W^-(I_Lv_L)W^+(I_Rv_L)$ and continuum to reduce the latter (more difficult for 2j+lnu: requires jet-charge ...)

$e^+e^- \rightarrow H(WW^*) \rightarrow 2l2v$ (preliminary)

■ PYTHIA8 for signal & backgrounds at $\sqrt{s} = m_{H} = 125$ GeV.

Final state: 2 leptons $e, \mu, \tau(e), \tau(\mu) + Miss.En$. within $|\eta| < 5$ (acceptance)

This retains 60% of the $\sigma(WW^*(2|2nu)) = 37$ ab.

■ Leptons cuts: $p_{\tau}(l) > 15 \text{ GeV/c} - \text{Kills qqbar}$

Isolation (Σ E<0.5 GeV, Δ R<2.5) \neg Kills τ - τ

 $m_{112} < 81 \text{ GeV} - \text{Reduces ZZ*}$

 $\cos(\theta_{112})>0$ — Reduces WW* continuum

Neutrino(s) cuts: ME > 20 GeV - Kills qqbar

Signal & backgrounds after cuts:

H(WW*): $\sigma = 22$ ab \Rightarrow σ (after cuts) ~ 10 ab

qqbar: $\sigma \sim 8 \text{ pb} \Rightarrow \sigma(\text{after cuts}) \sim 5 \text{ ab}$

 τ -τ: $\sigma \sim 1.2 \text{ pb} \Rightarrow \sigma(\text{after cuts}) \sim 1 \text{ ab}$

*WW**: $\sigma = 3.4 \text{ fb} \Rightarrow \sigma \text{(after cuts)} \sim 250 \text{ ab}$

 \Rightarrow $\sigma(after cuts) \sim 10? ab$ ZZ^* : $\sigma = 1.8 \text{ fb}$

For
$$L_{int}$$
=1 ab⁻¹
S/ \sqrt{B} ~10/ $\sqrt{270}$ ~0.6
BR(Hee) < 5×BR_{SM} (3 σ)
 g_{hee} < 2.2 × $g_{Hee,SM}$ (3 σ)

Multi-Variate Analysis (in progress) will improve significance.

$e^+e^- \rightarrow H$ x-section: Beam energy spread

- $\sigma(e^+e^-\rightarrow H)$ considered so far is for B.-W. with natural 4.2 MeV width...
- Convolution of increasing Gaussian energy spread of each e[±] beam with Higgs B.W. results on a (Voigtian) effective cross-section decrease:

 $E_{spread} \sim \Gamma_{H} \sim 4.2 \text{ MeV}$:

Reduction factor: 45%

Current FCC-ee nominal $(\Delta e_{beam}/E_{beam} \sim 0.05\%)$:

E_{spread}~ 30 MeV:

Reduction factor: 8%

e⁺e⁻ → H x-section: ISR reduction factor

■ Extra ~40% reduction in $\sigma(e^+e^-\rightarrow H)$ due to initial state radiation:

Conclusions

Resonant s-channel Higgs production at FCC-ee (\sqrt{s} = 125 GeV):

 $\sigma(e^+e^-\rightarrow H)_{B-W} \sim 1.64 \text{ fb (m}_H=125 \text{ GeV, } \Gamma_H=4.2 \text{ MeV)}$ (potentially visible thanks to huge FCC-ee lumi)

- Cleanest channels: WW*(2j,lv), WW*(2l2v) with σ = 78,37 ab Preliminary PYTHIA8 analysis for WW*(2j,lv) for l=e,μ,τ(e),τ(μ): Dominant background: WW* continuum (~250 ab, after cuts) For L_{int} = 1 ab⁻¹, S/√B~10/√270~0.6 ⇒ BR(Hee) < 5×BR_{SM} (3σ), g_{hee} < 2.2 × g_{Hee,SM} (3σ) (to be improved with: MVA & combination of various channels)
- Significance reduction ($\times 1/20$) due to: ISR (0.6), beam E_{spread} (~0.1). Crucial to improve current E_{spread} ~ 0.05% by 1 order of magnitude
- Fundamental & unique physics accessible if measurement feasible:
 - → Electron Yukawa coupling
 - → Higgs width measurable ("natural" threshold scan)
 - → Separation of possible nearly-degenarete H's

Backup slides