Krisztian Peters (CERN) & Markus Klute (MIT)

Higgs Group Report

FCC-ee / TLEP workshop CERN June 20th, 2014

Higgs Production

	TLEP 240
Total Integrated Luminosity (ab ⁻¹)	10
Number of Higgs bosons from $e^+e^- \rightarrow HZ$	2,000,000
Number of Higgs bosons from boson fusion	50,000

Coupling Measurements

	TLEP 240
$\sigma_{ m HZ}$	0.4%
$\sigma_{\rm HZ} imes { m BR}({ m H} ightarrow { m b} { m ar b})$	0.2%
$\sigma_{ m HZ} imes { m BR}({ m H} ightarrow { m car c})$	1.2%
$\sigma_{ m HZ} imes { m BR}({ m H} o { m gg})$	1.4%
$\sigma_{\rm HZ} imes { m BR}({ m H} o { m WW})$	0.9%
$\sigma_{\rm HZ} imes { m BR}({ m H} o au au)$	0.7%
$\sigma_{ m HZ} imes { m BR}({ m H} o { m ZZ})$	3.1%
$\sigma_{ m HZ} imes { m BR}({ m H} o \gamma \gamma)$	3.0%
$\sigma_{\rm HZ} imes { m BR}({ m H} o \mu \mu)$	13%

Program of Work

- * TLEP Physics Case, <u>JHEP 1401 (2014) 164</u> gives a good starting point for the Higgs Physics potential of a circular e e machine.
- Huge amount of work done at LEP and for ILC and CLIC
- * To prepare the FCC-ee/TLEP conceptual design report, progress is needed on a number areas, e.g.
 - Full simulation using a electron-positron detector
 - Theoretical uncertainties need detailed discussion
 - Expanded Higgs program
- * Areas or work
 - Infrastructure and Tools
 - * Experimental studies
 - * Phenomenology
 - Theoretical prediction

Infrastructure and Tools

- * TLEP Physics Case studies performed using CMS full simulation, in some case with additional assumptions. Reminder, CMS is not an electron-position collider detector:).
- * How can Higgs measurements be improved with an optimized detector (and collider)?
- * Examples:
 - vertex detector to discriminate Higgs to bb, cc, and gg
 - effect of jet angular and energy resolution on mass resolution

Infrastructure and Tools

- * To facilitate the studies we need to invest in tools
 - * development and validation of software framework
 - development (implementation) of reconstruction and identification tool
 - further development of Higgs combination tool
 - * comprehensive review of Monte Carlo generators
 - * review and implementation of theoretical uncertainties

Experimental Studies

Experimental studies have the goal to assess the performance of Higgs boson measurements using the FCC-ee and to qualify the detector design. Studies should be performed at √s = 240 GeV and 350 GeV unless otherwise stated.

- Higgs-strahlung production (ee -> HZ)
 - Inclusive Z -> II measurements
 - Measurement of the ZH cross section
 - Exclusive Z -> II measurements
 - Hadronic Higgs decays (H -> bb, cc, gg, WW, ZZ)
 - Higgs to ZZ (Essential for the total width determination at √s = 240 GeV)
 - Higgs to WW (with lepton decays)
 - Higgs to tau tau
 - Inclusive Z -> qq measurements
 - Measurement of the ZH cross section
 - Exclusive Z -> qq measurements
 - Four jet final state (H -> bb, cc, gg, WW, ZZ)
 - Six jet final state (H -> WW, ZZ, bb, cc, gg)
 - Jets plus leptons final states (H -> WW,ZZ,mumu)
 - Higgs to tau tau
 - Exclusive Z -> vv measurements
 - Higgs to bb
 - Invisible Higgs decays
 - Exotic Higgs decays (e.g. flavour changing decays)
- Vector boson fusion production
- Exclusive H-> γγ or H -> μμ (ee) production
- Exclusive H -> Zy production
- 5. ee -> Hy production
- ee -> H direct production
- 7. Other production processes
 - SM Higgs: bbH production, tau tau H production
 - 2HDM: hA production, bbH, tau tau production (enhanced with tan beta), and specific decays h -> AA, etc.

Channel need to be investigate wrt the detector performance

Phenomenology

- Extraction of Higgs boson couplings
- Extraction of total width from precision measurements
- Measurements of Higgs boson mass
- Study of tensor structure
- * Extraction of Higgs self coupling from precision measurements
- * Interplay of Higgs precision measurements with SM precision observables
- Rare decays
- Beyond standard model interpretations

Theoretical Predictions

- Cross sections for signal and backgrounds
- Decay width and Branching ratios

Table 1-5. Uncertainties on $M_H = 126$ GeV Standard Model widths arising from the parametric uncertainties on α_s , m_b , and m_c and from theory uncertainties [16]. For the total uncertainty, parametric uncertainties are added in quadrature and the result is added linearly to the theory uncertainty.

Channel	$\Delta lpha_s$	Δm_b	Δm_c	Theory Uncertainty	Total Uncertainty
$H o \gamma \gamma$	0%	0%	0%	±1%	±1%
H o bar b	$\mp 2.3\%$	+3.3% $-3.2%$	0%	$\pm 2\%$	$\pm 6\%$
H o c ar c	-7.1% +7.0%	$\mp 0.1\%$	$^{+6.2\%}_{-6.1\%}$	$\pm 2\%$	$\pm 11\%$
H o gg	$^{+4.2\%}_{-4.1\%}$	$\mp 0.1\%$	0%	$\pm 3\%$	$\pm 7\%$
$H \to \tau^+ \tau^-$	0%	0%	0%	$\pm 2\%$	$\pm 2\%$
$H \to WW^*$	0%	0%	0%	$\pm 0.5\%$	$\pm 0.5\%$
$H o ZZ^*$	0%	0%	0%	$\pm 0.5\%$	$\pm 0.5\%$

* Snowmass Higgs report or YR3 or Peskin et al

Conclusion

- * At the beginning of a long term coordinated FCC-ee/TLEP Higgs effort
- Large amount of work / results are already available
- Plenty interesting work ahead: infrastructure and tools, experimental studies, phenomenology and theory

* Pointer:

- Convener: Krisztian Peter (CERN), Markus Klute (MIT)
- * FCC-ee Higgs twiki: https://twiki.cern.ch/twiki/bin/view/FCC/FCCeeH126Properties
- * FCC-ee Higgs e-group: fcc-ee-H126Properties@cern.ch