FCC-ee accelerator overview

F. Zimmermann FCC-ee physics workshop ("TLEP7") CERN, 21 June 2014

> gratefully acknowledging input from FCC global design study & CepC team

Work supported by the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453

Future Circular Collider (FCC) study ; goals: CDR and cost review for the next European Strategy Update (2018)

International collaboration :

- *pp*-collider (*FCC-hh*)
 → defining infrastructure requirements
 ~16 T ⇒ 100 TeV in 100 km
- ~20 T \Rightarrow 100 TeV in 80 km
- including *HE-LHC* option: 16-20 T in LHC tunnel
- e⁺e⁻ collider (FCCee/TLEP) as potential intermediate step
- p-e (FCC-he) option
- 100 km infrastructure in Geneva area M. Benedikt

FCC-ee: e⁺e⁻ collider up to 350 (500) GeV

circumference ≈100 km

A. Blondel

short beam lifetime (~τ_{LEP2}/40) due to high luminosity **supported by top-up injection** (used at KEKB, PEP-II, SLS,...); top-up **also avoids ramping & thermal transients, + eases tuning**

FCC-ee/hh: hybrid NC & SC arc magnets

600

twin-aperture iron-dominated compact hybrid "transmission line" dipoles - for injector synchrotrons in FCC tunnel

- resistive cable for lepton machine
- superconducting for hadron operation

required one of many synergies hadron extraction 1.1 T lep between FCC-hh and FCC-ee

A. Milanese, H. Piekarz, L. Rossi, IPAC2014, TUOCB01

0.0 T

2.1 T

1.1 T

-1.1 T

50

parameter	LEP2	FCC-ee					CepC
		Z	Z (c.w.)	W	н	t	н
E _{beam} [GeV]	104	45	45	80	120	175	120
circumference [km]	26.7	100	100	100	100	100	54
current [mA]	3.0	1450	1431	152	30	6.6	16.6
P _{SR,tot} [MW]	22	100	100	100	100	100	100
no. bunches	4	16700	29791	4490	1360	98	50
<i>N_b</i> [10 ¹¹]	4.2	1.8	1.0	0.7	0.46	1.4	3.7
ε _x [nm]	22	29	0.14	3.3	0.94	2	6.8
ε _y [pm]	250	60	1	1	2	2	20
β* _x [m]	1.2	0.5	0.5	0.5	0.5	1.0	0.8
β* _y [mm]	50	1	1	1	1	1	1.2
σ* _y [nm]	3500	250	32	130	44	45	160
σ _{z,SR} [mm]	11.5	1.64	2.7	1.01	0.81	1.16	2.3
$\sigma_{z,tot}$ [mm] (w beamstr.)	11.5	2.56	5.9	1.49	1.17	1.49	2.7
hourglass factor F_{hg}	0.99	0.64	0.94	0.79	0.80	0.73	0.61
<i>L</i> /IP [10 ³⁴ cm ⁻² s ⁻¹]	0.01	28	212	12	6	1.7	1.8
τ _{beam} [min]	300	287	39	72	30	23	40

Shielding 100 MW SR at 350 GeV

FLUKA geometry layout for half FODO cell, dipoles details, preliminary absorber design incl. 5 cm external *Pb* shield

L. Lari et al., IPAC2014, THPRI011

FCC-ee IR design #1

 σ_X

H. Garcia, L. Medina, R. Tomas, IPAC2014, THPRI010

FCC-ee IR design #2

A. Bogomyagkov, E. Levichev, P. Piminov, IPAC2014, THPRI008

beam-beam tune shift & energy scaling

tune shift limits scaled from LEP data, confirmed by FCC R. Assmann & K. Cornelis, EPAC2000 simulations (S. White, K. Ohmi, ມ ຍິ 0.14 $\xi_{max} \propto 1/\tau_s^{0.4}$ A. Bogomyagkov, D Shatilov,...): LEP (45.5/65/98 GeV) 0.12 TLEP $\xi_{y} \simeq \frac{\beta_{y} r_{e} N}{2\pi \gamma \sigma_{x} \sigma_{y}} \leq \xi_{y,\max}(E)$ 0.10 0.08 0.06 $\xi_{y,\max}(E) \propto \frac{1}{\tau_{s}^{0.4}} \propto E^{1.2}$ 0.04 0.02 W Ζ Htī 0.00 10-4 10⁻³ 10⁻² 10-1 Damping decrement 1/ τ_{e} (1/turn)

 \rightarrow luminosity scaling with energy:

$$L = n_{IP} \frac{f_{coll}N^2}{4\pi\sigma_x\sigma_y} F_{hg} \propto \frac{\eta P_{SR}}{E^3} \frac{\xi_y}{\beta_y^*} \propto \frac{\eta_{w\to b}P_{wall}}{E^{1.8}} \frac{1}{\beta_y^*}$$

J. Wenninger

e⁺e⁻luminosity vs energy

luminosity [10³⁴ cm⁻²s⁻¹]

beamstrahlung (BS)

synchrotron radiation in the strong field of opposing beam two effects:

1) increased energy spread & bunch lengthening

$$\sigma_{\delta,tot} = \left(\frac{1}{2}\sigma_{\delta,SR}^{2} + \left(\frac{1}{4}\sigma_{\delta,SR}^{4} + \frac{1}{4}\frac{\tau_{z}n_{IP}}{T_{rev}}\sigma_{\delta,BS}^{2}\frac{\sigma_{\delta,SR}^{2}}{\sigma_{z,SR}^{2}}\right)^{1/2}\right)^{1/2} \begin{bmatrix} \text{K. Ohmi \& F.Z.,} \\ \text{IPAC14, THPRIOO4} \end{bmatrix}$$
with
$$\sigma_{\delta,BS} \approx \delta_{BS} \left(0.333 + \frac{4.583}{n_{\gamma}}\right)^{\frac{1}{2}}; \ \delta_{BS} \approx 0.86\frac{r_{e}^{3}\gamma N_{b}^{2}}{\sigma_{z}\sigma_{x}^{2}}; \ n_{\gamma} \simeq 2.1\frac{\alpha r_{e}N_{b}}{\sigma_{x}} \begin{bmatrix} \text{K. Ohmi \& F.Z.,} \\ \text{IPAC14, THPRIOO4} \end{bmatrix}$$

$$= \frac{1}{1986}$$

2) beam lifetime limitation due to high-energy photons

$$\tau_{BS} \approx \frac{1}{n_{IP} f_{rev}} \frac{4\sqrt{\pi}}{3} \sqrt{\frac{\delta_{acc}}{\alpha r_e}} \exp\left(\frac{2}{3} \frac{\delta_{acc} \alpha}{r_e \gamma^2} \frac{\gamma \sigma_x \sigma_z}{\sqrt{2} r_e N_b}\right) \frac{\sqrt{2}}{\sqrt{\pi} \sigma_z \gamma^2} \left(\frac{\gamma \sigma_x \sigma_z}{\sqrt{2} r_e N_b}\right)^{3/2}$$

V. Telnov, PRL 110 (2013) 114801

A. Bogomyagkov, E. Levichev, D. Shatilov, PRST-AB 17, 041004 (2014)

A. Bogomyagkov, E. Levichev, P. Piminov, IPAC2014, THPRI008

beamstrahlung lifetime

example: *FCC-ee H* (240 GeV c.m.) $\tau_{BS} = \frac{\tau_z}{2\xi\rho(\xi)}$ with $\xi \equiv \frac{\delta_{max}^2}{2\sigma_{\delta}^2}$

equilibrium distribution w/o lifetime vs. momentum aperture limit from simulation acceptance 0.1 10000 н 0.01 0.001 1000 0.0001 Lifetime (min) NNo 1e-05 1e-06 1e-07 100 1e-08 1e-09 1e-10 10 5 10 15 1.6 1.7 1.8 1.9 1.5 0 2 $(2J_{7}/\epsilon_{7})^{1/2}$ δ_{max} (%)

K. Ohmi et al., IPAC2014, THPRI003 & THPRI004

BS effect of luminosity spectrum

some e^{\pm} emit significant part of their energy \rightarrow degraded luminosity spectrum

$$\frac{L_{peak}}{L} \simeq \left[\frac{1}{N_{\gamma}}\left(1 - e^{-N_{\gamma}}\right)\right]^{2}$$
where
$$N_{\gamma} \simeq \frac{2\alpha r_{e}N}{\sigma_{\chi}}$$

denotes average number of BS photons per e⁻

The Twin Frontiers of FCC-ee Physics

Precision Measurements

 Springboard for sensitivity to new physics

• Theoretical issues:

Rare Decays

- Direct searches for new physics
- Many opportunities
- Z: 10¹²

FCC-ee promises much higher precision & and many more rare decays than any competitors

- H: 10⁶
- t: 10^6

M. Bicer et al., "First Look at the Physics Case of TLEP," JHEP 01, 164 (2014) J. Ellis

simulations confirm tantalizing performance

SuperKEKB = FCC-ee demonstrator

beam commissioning will start in early 2015

top up injection at high current $\beta_y^* = 300 \ \mu m$ (FCC-ee: 1 mm) lifetime 5 min (FCC-ee: $\geq 20 \ min$) $\epsilon_y/\epsilon_x = 0.25\%$ (similar to FCC-ee) off momentum acceptance (±1.5%, similar to FCC-ee) e^+ production rate (2.5x10¹²/s, FCC-ee: <1.5x10¹²/s (*Z* cr.waist)

SuperKEKB goes beyond FCC-ee, testing all concepts

vertical β* history

$$\sigma^* = \sqrt{\varepsilon\beta^*}$$

vertical rms IP spot size

collider / test	facility	$\sigma_{\!y}{}^*$ [nm]	β.,* :
LEP2	in regular font:	3500	$5 \text{ cm} \rightarrow$ 1 mm
KEKB	achieved	940	ε _y :
SLC	in italics: design	700	250 pm→ 2 pm
ATF2, FFTB	values	65 (<i>35</i>), 77	
SuperKEKB		50	
FCC-ee-H		44	
ILC		5 – 8	
CLIC		1 – 2	

polarization

RF power efficiencies: *ILC* vs *FCC-ee*

commissioning time & performance

circular & linear facilities	beam energy [GeV]	design luminosity [10 ³² cm ⁻² s ⁻¹]	peak luminosity /design	time to achieve design [y]
LEP1	45	0.13	2	5
SLC	45	0.06	0.5	- (>10)
LEP2	60-104.5	0.26	3	<0.5
DAFNE	0.5	5.0	0.9	- (>10)
PEP-II	9, 3.1	30	4	1.5
KEKB	8, 3.5	100	2	3.5
ATF-2	1.28	0.000001(eff.)	0.005 (eff.)	- [>4*]
FCC-ee-H	120	6000	?	?

* not counting the year of the earthquake; ATF-2 operating only for fraction of calendar time

a few open questions

- acceptable topology of collider vertical kink under the lake?
 constraints from vertical emittance & polarization
- off-momentum dynamic aperture
- RF efficiency
- polarization at energies > 200 GeV
- •

possible evolution of FCC complex

tentative time line

historical foresight

"An *e*⁺-*e*⁻ storage ring in the range of a few hundred GeV in the centre of mass can be built with present technology. ...would seem to be ... most useful project on the horizon."

80 100

150

200

Centre-of-mass energy (GeV)

300

400

B. Richter, Very High Energy Electron-Positron Colliding Beams for the Study of Weak Interactions, NIM 136 (**1976**) 47-60