Stefan Liebler

Report on the work of the MSSM subgroup: Neutral Higgs production

on behalf of the MSSM subgroup

Meeting of the LHC Higgs XS WG

Geneva - 13 June 2014

University of Hamburg

Outline

- New developments since YR3
- Transverse momentum distributions
- 4 Conclusions

MSSM Higgs production

Neutral Higgs production in the real MSSM:

Improvements in YR3:

- ✓ Inclusion of NLO third generation squark contributions (on top of Δ_b)
- Inclusion of electroweak contributions by light quarks

$$\sigma(pp \to \phi + X) = \sigma_{\rm NLO}^{\rm MSSM} (1 + \delta_{\rm EW}^{lq}) + (g_t^{\phi})^2 \left(\Delta \sigma_{\rm NNLO}^{t,{\rm SM},0}\right)$$

 \implies XS for $\phi \in \{h, H, A\}$ with SusHi (linked to FeynHiggs for m_{ϕ} and α) (SusHi also provides the $bb\phi$ XS in 5FS!)

Higlu [Spira '95], ggh@nnlo [Harlander Kilgore '02], SusHi [Harlander Liebler Mantler '12] FeynHiggs [Hahn Heinemeyer Hollik Rzehak Weiglein] i ii

1

000

ശ

000

000

Relevant diagrams with
$$V \in \{W, Z\}$$
:

Definition of SUSY electroweak correction factor:

$$\delta_{\rm EW}^{lq} = \frac{\alpha_{\rm EW}}{\pi} 2 \mathsf{Re}(\mathcal{A}^{\phi} \mathcal{A}^{\phi, \rm EW}) / |\mathcal{A}^{\phi}|^{2}$$
$$\mathcal{A}^{\phi, \rm EW} = -\frac{3}{8} \frac{x_{W}}{s_{W}^{2}} \left[\frac{2}{c_{W}^{2}} \left(\frac{5}{4} - \frac{7}{3} s_{W}^{2} + \frac{22}{9} s_{W}^{4} \right) A[x_{Z}] + 4A[x_{W}] \right] g_{V}^{\phi}$$

Complex mass scheme: $x_V = (m_V - i \frac{\Gamma_V}{2})^2 / m_\phi^2$

Supersymmetry enters g_V^{ϕ} : $g_V^h = \sin(\beta - \alpha), \quad g_V^A = 0, \quad g_V^H = \cos(\beta - \alpha)$

For moderate masses of SM-like Higgs results in similiar correction as SM electroweak correction factor [Actis Passarino Sturm Uccirati '08].

Usage of YR3 setup for new benchmark scenarios (compatible with Run 1):

Scenario	$M_{ m SUSY}$ [GeV]	X_t [GeV]	μ [GeV]	M_2 [GeV]
m_h^{\max}	1000	2000	200	200
$m_h^{\text{mod}+}$	1000	1500	200	200
$m_h^{\text{mod}-}$	1000	-1900	200	200
light stop	500	1000	400	400
light stau	1000	1600	500	200
tau-phobic	1500	3675	2000	200
(low MH)	1500	3675	$m_A = 110 {\rm GeV}$	200

[Carena Heinemeyer Stål Wagner Weiglein '13]

Root files provided on the webpage of the LHC Higgs XS WG as a function of m_A and $\tan\beta$ for $\phi \in \{h, H, A\}$: [Vazquez Acosta Frensch]

- ✓ Higgs masses m_{ϕ} (*h* mostly compatible with SM Higgs ~ 125 GeV)
- ✓ Gluon fusion XS (in accordance to YR3)
- Bottom-quark annihilation XS in 4FS/5FS and Santander-matched XS
- ✓ Branching ratios (with FeynHiggs and HDECAY see A. Mück's talk)
- ✓ Scale and PDF+ α_s uncertainties

For other scenarios: Easy to use setup. Get in contact!

Benchmark scenarios

Plots for the new benchmark scenarios on the webpage (Picture Gallery), e.g.:

Outline

- New developments since YR3
 - Transverse momentum distributions
 - Conclusions

Bottom-quark annihilation in 4FS: [Dittmaier Krämer Spira]

- $\checkmark\,$ Completion of grids for $\sqrt{s}=7,8,13$ and $14\,{\rm TeV}$ for H/A
- ✓ Addition of complete grids for the $Y_b \cdot Y_t$ interference terms (interferences of bbH/A in 4FS and ggH/A production)
- ✓ Update of Santander-matched XS for SM Higgs on webpage

Detailed uncertainty estimation for gluon fusion:

[Bagnaschi Harlander Liebler Mantler Slavich Vicini '14]

Study includes approx. NNLO stop contributions (incl. in SusHi). Adopt vanishing-Higgs-mass limit (VHML) for top-stop sector to obtain NNLO:

$$\begin{aligned} \mathcal{L}_{ggH} &= -\frac{1}{4v} C(\alpha_s) H G_{\mu\nu} G^{\mu\nu} \Rightarrow C(\alpha_s) = C^{(0)} + \frac{\alpha_s}{\pi} C^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 C^{(2)} \\ \sigma^{\text{NNLO}} &= |\mathcal{A}_{t\tilde{t}}^{1\ell}|^2 \Sigma^{(0)} + \frac{\alpha_s}{\pi} \left(|\mathcal{A}_{t\tilde{t}}^{1\ell}|^2 \Sigma^{(1)} + 2 C^{(1)} \Sigma^{(0)} \operatorname{Re} \mathcal{A}_{t\tilde{t}}^{1\ell} \right) \\ &+ \left(\frac{\alpha_s}{\pi}\right)^2 \left[|\mathcal{A}_{t\tilde{t}}^{1\ell}|^2 \Sigma^{(2)} + 2 \left(C^{(1)} \Sigma^{(1)} + C^{(2)} \Sigma^{(0)} \right) \operatorname{Re} \mathcal{A}_{t\tilde{t}}^{1\ell} + (C^{(1)})^2 \Sigma^{(0)} \right] \end{aligned}$$

Approximation: $C^{(2)} = C_t^{(2)} \leftrightarrow \text{Uncertainty} [0, 2C_t^{(2)}]$

Discussion of XS and uncertainties for the *light stop* scenario:

$$m_{\tilde{t}_1}=324\,{\rm GeV}$$
 and $m_{\tilde{t}_2}=672\,{\rm GeV}$ $m_{\tilde{b}_1}>450\,{\rm GeV}$ and $m_{\tilde{b}_2}<550\,{\rm GeV}$

Detailed uncertainty estimation for gluon fusion

✓ Renormalization and factorization scale uncertainties ✓ $\sim \pm (5 - 25)$ % Consider sets C_{μ} of pairs $(\mu_{\rm R}, \mu_{\rm F})$ with $\mu_{\rm R} = \{m_{\phi}/4, m_{\phi}/2, m_{\phi}\}, \mu_{\rm F} = \{m_{\phi}/4, m_{\phi}/2, m_{\phi}\},$ with the additional constraint $1/2 \le \mu_{\rm R}/\mu_{\rm F} \le 2$

UH

Uncertainties in the gluon fusion XS prediction:

- $\checkmark\,$ Renormalization and factorization scale uncertainties $\checkmark\,\sim\pm(5-25)\%$
- ✓ PDF+ α_s uncertainties

 $\checkmark \sim \pm (2-5)\%$

Performed study according to PDF4LHC recipe: Outcome: main dependence on the Higgs mass m_{ϕ} \leftrightarrow can be taken from SM uncertainty

- ✓ Renormalization and factorization scale uncertainties ✓ $\sim \pm (5-25)$ %
- ✓ PDF+ α_s uncertainties
- Uncertainty from heavy SUSY masses expansion
 + of approximate NNLO stop contributions

Multiply the two-loop $\tilde{t} + \tilde{b}$ contributions by test factors

UН

✓ ~ ±(2 - 5)% ✓ ~ ±(5 - 20)%^(*) Шi

- $\checkmark\,$ Renormalization and factorization scale uncertainties $\checkmark\,\sim\pm(5-25)\%$
- ✓ PDF+ α_s uncertainties
- Uncertainty from heavy SUSY masses expansion
 + of approximate NNLO stop contributions
- ✓ Uncertainty from missing contributions to Δ_b

 $\begin{array}{l} \mbox{Variation of } \Delta_b \mbox{ by } \pm 10\% \\ \rightarrow \mbox{ for positive } \mu : \mbox{ Uncertainty } < 10\% \\ \rightarrow \mbox{ for negative } \mu : \mbox{ Uncertainty up to } \sim 25\% \\ \mbox{ Future work: Inclusion of NNLO contributions} \\ \mbox{ [Noth Spira '08 '10, Mihaila Reisser '10]} \end{array}$

 $\checkmark \sim \pm (2-5)\%$

$$\checkmark \sim \pm (5-20)\%^{(*)}$$

 $\checkmark \sim \pm 10(25)\%^{(**)}$

(*) for m_ϕ close to the SUSY threshold, i.e. $2m_{\tilde{t}_1}$ (**) in case of large coupling $b\bar{b}\phi$ / large $\tan\beta$

- $\checkmark\,$ Renormalization and factorization scale uncertainties $\checkmark\,\sim\pm(5-25)\%$
- ✓ PDF+ α_s uncertainties
- Uncertainty from heavy SUSY masses expansion
 + of approximate NNLO stop contributions
- ✓ Uncertainty from missing contributions to Δ_b
- $\checkmark \sim -(0-80)\%^{(**)}$ Uncertainty in renormalization of Y_b Choose $Y_b \propto m_b^{\text{pole}}$ or $m_b^{\overline{\text{MS}}}(\mu_{\text{R}} \sim m_{\phi}/2)$ δY_b, light-stop scenario δY_b, light-stop scenario 50 40 40 н 08 ع الع 30 anβ \leftrightarrow large, where 20 20 $bb\phi$ dominates 10 10 150 300 100 200 250 100 200 300 400 500 m₄ [GeV] m₄ [GeV] (*) for m_{ϕ} close to the SUSY threshold, i.e. $2m_{\tilde{t}_{a}}$ (**) in case of large coupling $b\bar{b}\phi$ / large tan β

UН

✓ ~ ±(2 - 5)% ✓ ~ ±(5 - 20)%^(*)

 $\checkmark \sim \pm 10(25)\%^{(**)}$

Шi

Outline

- New developments since YR3
- Transverse momentum distributions
 - Conclusions

Gluon fusion: Status in YR3

Example: *light stop* scenario with $m_A = 130 \text{ GeV}$, $\tan \beta = 40$

Red: SusHi fixed order, Black: POWHEG fixed order,

Blue: POWHEG method (Resummation of $\log(p_T/m_{\phi})$ via Sudakov form factor and PS) [Bagnaschi Degrassi Slavich Vicini '11]

$$R = \frac{d\sigma^{\rm SUSY}/dp_T}{d\sigma^{\rm SM}/dp_T}$$

UΗ

Шi

Gluon fusion/Bottom-quark annihilation

Gluon fusion: Analytic resummation

for top in VHML: NNLO+NNLL [Bozzi Catani de Florian Grazzini '06]

Ongoing: Translation to MSSM/2HDM - Detailed comparison [Nikitenko]

Public: POWHEG-BOX (gg_H_MSSM, gg_H_2HDM) [Bagnaschi Vicini] On the way: SusHi version with analytic resummation [Harlander Mantler Wiesemann] SusHi-amplitudes to POWHEG-BOX/MG5_aMC@NLO [Mantler Wiesemann]

Bottom-quark annihilation: p_T resummation in 5FS at NNLO+NNLL (NLO+NLL [Belyaev Nadolsky Yuan '06])

(*) SM recommendation: Scale choices: $\mu_{\rm R} = \mu_{\rm F} = \mu_0 = m_T = \sqrt{m_H^2 + p_T^2}, Q_t = m_H/2, Q_b = m_b$ Uncertainties: $m_T/2 < \mu_{\rm F}/\mu_{\rm R} < 2m_T$ (excluding $\mu_{\rm R}/\mu_{\rm F} = 4, 1/4), m_H/4 < Q_t < m_H, m_b/3 < Q_b < 3m_b$

Outline

- 2 New developments since YR3
- Transverse momentum distributions
- Conclusions

The MSSM subgroup was a **success**,

similar to the whole LHC Higgs cross section working group.

Recently (2013-2014) the MSSM subgroup

- ✓ improved precision in Higgs production cross sections by including squark and electroweak contributions to $gg\phi$, adding more contributions to $bb\phi$.
- ✓ provided root files/figures for benchmark scenarios compatible with Run 1. (Check the webpage!)

Are we done? Never ever!

- We can improve the theoretical uncertainty estimation and/or work harder to calculate higher orders.
- ✓ Work on transverse momentum distributions is appreciated.
- ✓ Inclusion of bottom-quark annihilation to POWHEG.

Thank you for your attention!

The neutral components of the Higgs doublets $H_u = (H_u^+, H_u^0)^T$ and $H_d = (H_d^0, H_d^-)^T$ mix as follows

$$\begin{pmatrix} H_u^0 \\ H_d^0 \end{pmatrix} = \begin{pmatrix} v_u \\ v_d \end{pmatrix} + \frac{1}{\sqrt{2}} R_\alpha \begin{pmatrix} h \\ H \end{pmatrix} + \frac{i}{\sqrt{2}} R_\beta \begin{pmatrix} G \\ A \end{pmatrix}$$

The mixing matrix is expressed in terms of the "Higgs mixing angle α "

$$R_{\alpha} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$$

The Higgs sector at LO is determined by fixing $\tan \beta = \frac{v_u}{v_d}$ and m_A^2 :

$$\begin{split} m_{h,H} &= \frac{1}{2} \left(m_A^2 + m_Z^2 \mp \sqrt{(m_A^2 - m_Z^2)^2 + 4m_Z^2 m_A^2 \sin^2(2\beta)} \right) \\ &\tan(2\alpha) = \tan(2\beta) \frac{m_A^2 + m_Z^2}{m_A^2 - m_Z^2} \end{split}$$

The lightest Higgs *h* mass obtains large corrections at higher orders: FeynHiggs [Frank Degrassi Hahn Heinemeyer Hollik Rzehak Slavich Weiglein Williams] 3-loop [Martin '07; Kant Harlander Mihaila Steinhauser '08 '10].

In the MSSM, Higgs couplings to the *b*-quark can be enhanced by $\tan \beta$: Relative strength of the Higgs boson couplings g_f^{ϕ} with $\phi \in \{h, H, A\}$ to the SM fermions (with respect to the SM Higgs boson couplings):

$$g_{u}^{h} = \frac{\cos \alpha}{\sin \beta} \qquad g_{u}^{H} = \frac{\sin \alpha}{\sin \beta} \qquad g_{u}^{A} = \frac{1}{\tan \beta}$$

$$g_{d}^{h} = -\frac{\sin \alpha}{\cos \beta} \qquad g_{d}^{H} = \frac{\cos \alpha}{\cos \beta} \qquad g_{d}^{A} = \tan \beta$$

$$\phi = -\frac{\sin \alpha}{\cos \beta}$$

In addition, the superpartners of the quarks, the squarks, are relevant

$$\mathcal{L} \supset -(ilde{q}_L^\dagger, ilde{q}_R^\dagger) \mathcal{M}_{ ilde{q}}^2 \begin{pmatrix} ilde{q}_L \ ilde{q}_R \end{pmatrix}$$

with the mass matrix:

$$\mathcal{M}_{\tilde{q}}^{2} = \begin{pmatrix} M_{qL}^{2} + m_{q}^{2} + m_{E1}^{2} & m_{q}(A_{q} - \mu\kappa) \\ m_{q}(A_{q} - \mu\kappa) & M_{qR}^{2} + m_{q}^{2} + m_{E2}^{2} \end{pmatrix}$$

They form two mass eigenstates:

$$\begin{pmatrix} \tilde{q}_1\\ \tilde{q}_2 \end{pmatrix} = \begin{pmatrix} \cos\theta_{\tilde{q}} & \sin\theta_{\tilde{q}}\\ -\sin\theta_{\tilde{q}} & \cos\theta_{\tilde{q}} \end{pmatrix} \begin{pmatrix} \tilde{q}_L\\ \tilde{q}_R \end{pmatrix}$$

 $m_{E1}^2 = m_z^2 \cos(2\beta) (T_q^3 - Q_q \sin^2 \theta_W); \quad m_{E2}^2 = m_Z^2 \cos(2\beta) Q_q \sin^2 \theta_W; \quad \kappa = \tan\beta(d), \cot\beta(u)$

 ϕ ----- $g_{\bar{f}ij}^{\phi}$

Appendix

Gluon fusion at LO using $\tau_{\phi} = m_{\phi}^2/s$: Partonic \rightarrow Hadronic XS: $\sigma(pp \to \phi + X) = \sigma_0^{\phi} \tau_{\phi} \frac{d\mathcal{L}^{gg}}{d\tau_{\phi}}$ $\frac{d\mathcal{L}^{gg}}{d\tau} = \int^1 \frac{dx}{x} g(x) g(\tau/x)$ LO partonic cross section (XS): ععف $\sigma_0^{\phi} = \frac{G_F \alpha_s^2}{288 \sqrt{2}\pi} |\mathcal{A}^{\phi}|^2$ QQQ QQ $\mathcal{A}^{\phi} = \sum \left(a_{q}^{\phi,(0)} + a_{\tilde{q}}^{\phi,(0)} \right) \quad \text{with} \quad a_{q}^{\phi,(0)} = g_{q}^{\phi} \frac{3\tau_{q}}{2} (1 + (1 - \tau_{q}^{\phi}) f(\tau_{q}^{\phi}))$ $q \in \{t, b\}$ Quark contributions $\tilde{a}_{q}^{\phi,(0)} = -\frac{3\tau_{q}^{\phi}}{8} \sum_{i=1}^{2} g_{\tilde{q}ii}^{\phi} (1 - \tau_{\tilde{q}i}^{\phi} f(\tau_{\tilde{q}i}^{\phi}))$ Squark contributions

$$\tau_q^{\phi} = 4m_q^2/m_{\phi}^2, \quad \tau_{\bar{q}i}^{\phi} = 4m_{\bar{q}i}^2/m_{\phi}^2, \quad f(\tau) = \begin{cases} \arctan^2 \frac{1}{\sqrt{\tau}} & \tau \ge 1\\ -\frac{1}{4} \left(\log \frac{1+\sqrt{1-\tau}}{1-\sqrt{1-\tau}} - i\pi\right)^2 & \tau < 1 \end{cases}$$

Appendix Cancellation of logs

Cancellation of logs - Bottom 2-loop contributions: [Spira Djouadi Graudenz Zerwas '95] in the notation of [Degrassi Slavich '10]

$$\begin{aligned} G_b^{2\ell} &= C_F \, G_b^{(g,C_F)} \,+\, C_A \, G_b^{(g,C_A)} \\ &2 \, m_b^2 \, G_b^{(g,C_F)} \,=\, \mathcal{F}_{1/2}^{(2\ell,a)}(\tau_b) \,+\, \mathcal{F}_{1/2}^{(2\ell,b)}(\tau_b) \,\left(\ln \frac{m_b^2}{Q^2} - \frac{1}{3} \right) \\ &2 \, m_b^2 \, G_b^{(g,C_A)} \,=\, \mathcal{G}_{1/2}^{(2\ell,C_A)}(\tau_b) \end{aligned}$$

In the limit $\tau_b = 4 m_b^2/m_\phi^2 \ll 1$ the above expressions reduce to:

$$\begin{split} \mathcal{F}_{1/2}^{(2\ell,a)}(\tau) &= -\tau \left[9 + \frac{9}{5}\,\zeta_2^2 - \zeta_3 - (1 + \zeta_2 + 4\,\zeta_3)\,\ln(\frac{-4}{\tau}) - (1 - \zeta_2)\,\ln^2(\frac{-4}{\tau}) \right. \\ &+ \frac{1}{4}\,\ln^3(\frac{-4}{\tau}) + \frac{1}{48}\,\ln^4(\frac{-4}{\tau})\right] \,+\,\mathcal{O}(\tau^2) \\ \mathcal{F}_{1/2}^{(2\ell,b)}(\tau) &= 3\,\tau \left[1 + \frac{1}{2}\,\ln(\frac{-4}{\tau}) - \frac{1}{4}\,\ln^2(\frac{-4}{\tau})\right] \,+\,\mathcal{O}(\tau^2) \\ \mathcal{G}_{1/2}^{(2\ell,C_A)}(\tau) &= -\tau \left[3 - \frac{8}{5}\,\zeta_2^2 - 3\,\zeta_3 + 3\,\zeta_3\,\ln(\frac{-4}{\tau}) - \frac{1}{4}\,(1 + 2\,\zeta_2)\,\ln^2(\frac{-4}{\tau}) \right. \\ &\left. - \frac{1}{48}\,\ln^4(\frac{-4}{\tau})\right] \,+\,\mathcal{O}(\tau^2) \end{split}$$

For $Q = m_b$ the various logarithms accidentally cancel in case of gluon fusion.

Resummation of large $\tan\beta$ -enhanced terms in the MSSM

 $\mathcal{L} \supset -Y_t H_u Q t_R + Y_b H_d Q b_R$

Using $\langle H_u \rangle = v_u, \langle H_d \rangle = v_d$ and $v_d^2 + v_u^2 = v^2, \tan \beta = v_u/v_d$ we define

The effective Lagrangian motivates:

$$m_b = Y_b v_d + \tilde{Y}_b v_u = Y_b v_d (1 + \epsilon \tan \beta)$$

$$\Rightarrow \quad Y_b = \frac{m_b}{v_d (1 + \Delta_b)}$$

This replacement implies a resummation of large $\tan \beta$ -enhanced terms:

[Hall Rattazzi Sarid '93, Hempfling '94, Carena Garcia Nierste Wagner '99, Guasch Häfliger Spira '03]

Bottom-quark annihilation:

 $pp \rightarrow (b\bar{b})\phi + X$ for enhanced couplings to *b*-quarks relevant \rightarrow MSSM!

4 flavour scheme (4FS) Collinear logarithms $\propto \log(m_b/m_{\phi})$ 5 flavour scheme (5FS) Resummation of logarithms *b* quarks as partons

Calculation of inclusive cross section at NNLO in the 5FS: bbh@nnlo [Harlander Kilgore '03]

Distributions for Higgs+jet(s) production in the 5FS [Harlander Ozeren Wiesemann '10, Buehler Herzog Lazopoulos Mueller '12]