Non-SM Decays of the 125 GeV Boson

Survey for the HXSWG

Exotic Decays of the 125 GeV Higgs Boson

David Curtin,¹ Rouven Essig,¹ Stefania Gori,^{2,3} Prerit Jaiswal,⁴ Andrey Katz, 5 Tao Liu,
6 Zhen Liu, 7 David McKeen, $8, 9$ Jessie Shelton,
5 Matthew Strassler,¹ Ze'ev Surujon,¹ Brock Tweedie,¹⁰ and Yi-Ming Zhong^{1,*}

Matt Strassler Harvard 6/13/14

Contains extensive list of references

Outline

- Agenda: Which non-SM decays covered/not covered today?
	- Decays not discussed in our recent review paper
- Motivation: Why might we expect non-SM multi-body *h* decays?
- Decays with no intrinsic MET (except neutrinos)
	- Promising channels
	- **Benchmarks/Simplified Models**
- **Decays with new sources of MET**
	- **Complexities**
	- Promising channels
		- **Low MET vs High MET**
	- **Benchmarks/Simplified Models**

Not Covered In Our Review

$h \to Z \gamma$; $h \to \tau \mu$

- **These are actively under study by the experiments**
- Benchmarks not needed: parameterize as a Branching Fraction [Br]

Also I will say nothing about $h \rightarrow h$ invisible today; well-studied.

$h \rightarrow$ many visible particles (with or without MET)

- **■** h \rightarrow 6 τ ; h \rightarrow 8 b ; h \rightarrow ≥ 6 μ /e etc. e.g. in NMSSM
- \blacksquare h \rightarrow 2 triplets of fermions e.g. via RPV SUSY
- \blacksquare h \rightarrow many leptons (unclustered)
- \blacksquare h \rightarrow complex lepton jets
	- Complex \rightarrow more than two tracks, possibly including hadrons]
- Needs special discussion all its own very complicated

$h \rightarrow$ long-lived particles decaying in flight

Needs special discussion all its own – very complicated

Covered Today and in Our Review

h decays

- to at most four visible SM partons
- and involving at least one non-SM particle in intermediate step

Matt Strassler 6/12/2014 4

Motivation

- h decays may serve as window to unknown particles.
	- e.g. discovery of neutrino in beta decay, other neutrinos in muon, tau decay
	- **e.g. non-discovery of 4th neutrino, majorons, others in Z decay**
- Dark Matter exists;
	- if it is particles, these particles may not carry SU(2) quantum numbers
	- Therefore these particles may have evaded LEP & have mass < 100 GeV
	- So possible that $h \to DM \rightarrow invisible$ decay
		- Difficult to observe for Br < 10%
	- If DM part of low mass dark **sector** ("*hidden valley*"), then maybe
		- \blacksquare h \rightarrow dark sector particles \rightarrow visible particles, with or without MET
			- Much easier to observe! Can sometimes reach Br <<< 10%
- H "Portal" easy access to dark/hidden sectors/valleys
	- \blacksquare H operator has dimension 1, $|H|^2$ is gauge invariant, dimension 2
	- Coupling to "dark" sector involves low dimension operator

Matt Strassler 6/12/2014 5

Motivation (2)

- **125 GeV h has very narrow width**
	- \rightarrow small interactions with new sector can generate new decays
	- These decays could have had Br \sim 100%; could still have Br \sim 10%.
- Number of h produced is large, so potential to reach Br $\sim 10^{-4}$ or better
	- 10⁶ already produced
	- Approaching 10⁸ in foreseeable future
		- **But --- trigger and analysis challenges!**
		- 2011-2012 data may still be useful!
- In some theories,
	- h decays are **first** BSM physics discoverable at LHC
	- Or even the **only** BSM physics discoverable at LHC14!
- Same searches might turn up new members of scalar sector (e.g. heavy H) whose decays are dominated by non-SM final states

Decays Without MET

New particles with $m < m_h$ must be **neutral** to avoid LEP discovery

With a small loophole

We consider

- Spin 0 "a" [scalar or pseudo-scalar]
- Spin 1 "Z_D" [vector or pseudo-vector]
	- **Spin** $\frac{1}{2}$ \rightarrow **h decay to 6 visible fermions or MET** $h \rightarrow 2 \rightarrow 4$
		- *e.g. h → neutralinos → 6 fermions via RPV*

Four e/μ Final State

$h \rightarrow Z Z_D$

- \blacksquare Z_D produced & decays via kinetic mixing with γ /Z
- 2 parameters: Z_{D} mass, $\varepsilon \ll 1$

 Z_D has extremely narrow width

Published ATLAS/CMS ZZ* data allow us to extract limits

Direct limit

 $Br(h \rightarrow Z X \rightarrow 4\ell$) ~ 3 x 10⁻⁵

Including Z decay width to leptons

Br(h \rightarrow Z X) Br(X \rightarrow *ll*) ~ 5 x 10⁻⁴

- Br($Z_{\text{D}} \to \ell \ell$) ~ 0.3
- **Br(h** \rightarrow **Z Z_D)** ~ 2 x 10⁻³

Note: no information below 12 GeV

Br's for Z_D with only kinetic mixing

Br(Z_D -> ee) + Br(Z_D $\rightarrow \mu\mu$) > 20% (except at ρ,ω); typically 30%

Limit ε for each Z_{D} mass

Our recast of CMS; Similar for ATLAS

Four e/μ Final State

$h \rightarrow Z_{D} Z_{D}$

- \blacksquare Z_D produced via mixing of h with h_D
- \blacksquare Z_D decays via mixing with γ /Z

Why doesn't $h \rightarrow Z Z^*$ take care of this?

- \blacksquare Incorrectly pair leptons in almost all eeee, $\mu\mu\mu\mu$ events
- Eliminate most eeu u events for m_{ℓ} < 40 GeV
- Still we can extract limits (CMS $h\rightarrow ZZ^*$, ATLAS Z^*Z^*)

l e*ZD* θ **l** *h* $h_D^{}$ e **l** *ZD* **l** $h \rightarrow 2 \rightarrow 4$

Direct limit

 $Br(h \rightarrow XX \rightarrow 4\ell) \sim 5 \times 10^{-5}$

Assuming a Z_D with kinetic mixing

Br(h \rightarrow **Z_D** Z_D) ~ 5 x 10⁻⁴

We think ATLAS/CMS could do factor of 2 - 8 better now, especially at low mass

Matt Strassler 6/12/2014 13

Four e/μ Final State

$h \rightarrow Z_{D} Z_{D}$

- \blacksquare Z_D produced via mixing of h with h_D
- \blacksquare Z_D decays via mixing with γ /Z

Unless Z_D is long-lived, ε does not enter phenomenology

Therefore two parameters:

- 1. Z_D mass
- 2. Replace θ with Br(h \rightarrow Z_DZ_D)

3rd parameter: assumed Z_D mixing pure kinetic

This determines Z_D branching fractions *However, we think this parameter can be ignored.*

Model: Limit $Br(h \rightarrow Z_D Z_D)$ vs. mass of Z_D

$h \to Z_{\Omega} Z_{\Omega}$

- -4ℓ ; 2 ℓ 2j; 4j
- (rare) final states with neutrinos

Sensitivity from 4 leptons far greater than for any other final states

2 jets \rightarrow 1 jet if low Z_D mass

Quantified (subject to further study) in our paper

Therefore it is enough to state result from 4 leptons in one model.

- Easy to convert to any other model
	- **Just multiply by** $[Br(Z_D \rightarrow \ell\ell)_{new} / Br(Z_D \rightarrow \ell\ell)_{old}]^2$

Recommend:

- Assume pure kinetic mixing \rightarrow Br($Z_{\text{D}} \rightarrow \ell \ell$) determined
- **2** Parameters: Br(h \rightarrow Z_D Z_D), mass of Z_D

Four Photons

$h \rightarrow a a$

- *a* produced via coupling in scalar effective potential
- *a* decays to gluons and/or photons via loop
	- No coupling to fermions
- 3 parameters *(unlike* $Z_D \rightarrow ff$)
	- m*^a*
	- **Br(h** \rightarrow **a a)**
	- Br($a \to \gamma \gamma$) depends on charge/mass of loop particles
		- Colorless particles in loop: $Br(a \rightarrow \gamma \gamma) = 1$
		- Colored particles in loop: $Br(a \rightarrow \gamma \gamma) < 0.005$ usually
		- **General spectrum Anything between**

Recommend:

- Put limits on $Br(h \rightarrow a a)$ $[Br(a \rightarrow \gamma \gamma)]^2$ *(expect in 10⁻⁽⁴⁻⁵⁾ range now)*
- For now, ignore $Br(a \rightarrow \gamma \gamma)$; keep it unspecified. Why?
	- If we take $Br(a \rightarrow \gamma \gamma) = 1$, nothing new;
	- But if we take $Br(a \to \gamma \gamma) < 0.01$, no interesting limit until late LHC14 !
	- And it doesn't matter: 4j, 2j2 γ searches maybe relevant only at \sim 300(?) fb⁻¹

An *a* that couples to fermions

$h \rightarrow a a$

- *a* produced via coupling in scalar effective potential
- *a* decays mainly to fermions via Yukawa-like couplings

Example: NMSSM -- gets lot of attention, but **where is S**?

- *a* branching fractions similar to comparable-mass h
- **a** \rightarrow $\tau\tau$ small, $\mu\mu$ negligible if m_a > 2 m_b

Example: More general 2HDM + singlet scalar

- Leptonic, up-type, down-type Br's may grow/shrink relative to NMSSM
- **Can have** $a \rightarrow \tau \tau$ **large,** $\mu\mu$ **measurable even if** $m_a > 2 m_b$

Different Branching Fractions for *a*

Should not restrict searches to NMSSM-motivated scenario!

Recommend use of at least two benchmark models:

- 1. NMSSM-like model
- 2. Leptonic-dominated quark-suppressed 2DHM+S model

Current Estimates of Sensitivity

Summary: Decays Without MET

Decays with MET

- With MET, the number of processes and parameters grows rapidly
- Any final state can arise from many decay chains
	- Need multiple simplified models
- \blacksquare Low MET vs High MET
	- Very different strategies needed
	- Big differences in sensitivity as masses are varied
- Studies needed!
	- Experimental issues are subtle, so especially need experimental studies!
- Here: focus only on most promising final states
	- 1 or more photons + MET
	- 1 or more lepton **pairs** + MET

No evidence yet that other final states are feasible at high MET

• Maybe resonant bb + MET at 300 fb⁻¹?

Challenges (1)

Often multiple possible decay chains with different kinematics

- Need several simplified models to cover kinematics
- Typically have 3 or more parameters (multiple masses, Br's)

Challenges (2)

- High MET: MET is useful in bkgd reduction, but γ/ℓ soft, inefficient
	- MET-based search, plus soft visible objects to reduce backgrounds
		- Possible kinematic features in the visible objects
- Low MET: harder γ / ℓ , but MET useless; just changes kinematics
	- Visible parton-based search, but with relaxed kinematic constraints

Example: 4 leptons + MET

- *High MET: use VBF + MET search*
	- *+ require 3 soft* **l** *or + 2 SS* **l** *?*
- *Low MET: use 4-lepton search*
	- *Require all 4* **l** *detectable*
	- *Do not demand* $m_{4\ell} = 125 \text{ GeV}$
	- *Look for resonances or edges in* **l +l –** *pairs*

(alternate: use trilepton search, look for Z_D resonance?)

MET Story Very Incomplete

Not enough studies (by us or by others) to justify strong recommendations

- e.g. no study of $\gamma\gamma$ + MET where $\gamma\gamma$ is **resonant**
- **Best search techniques are often unclear**

Only have preliminary & probably pessimistic estimates of what's possible.

Even pessimistically, kinematic regimes of nice models exist where MET +

- \blacksquare 2 ℓ
- -4ℓ
- **2** γ (and presumably 4 γ)

already can be realistically tested with **current data**

Not clear for MET + γ Nothing known for MET + 4b, etc.

Suggested Models For MET Cases

Not complete list!

• Search for $h \to \ell^+ \ell^- + \not\!\!{E}_T$, including regimes where the leptons are collimated, and including the cases where there is a resonance in $m_{\ell\ell}$. Benchmark models include $h \rightarrow$ $XY \to Z_D YY$ or aYY , $h \to XX \to aa^{(l)}YY$ for $m_a < 2m_\tau$, $h \to XX \to Z^*Z^*YY$, where Y is invisible and Z^* is an off-shell Z boson. Occurs in NMSSM • Search for $h \to \ell^+ \ell^- \ell^+ \ell^-$ # E_T , including regimes where the leptons are collimated, and including the cases where there is a resonance in $m_{\ell\ell}$. Benchmark models include $h \to XX \to Z_D Z_D Y Y$, $h \to XX \to aa^{(\prime)} Y Y$ for $m_a < 2m_\tau$, $h \to XX \to Z^* Z^* Y Y$. where Y is invisible and Z^* is an off-shell Z. Also: RPV neutralinos $\rightarrow \ell \ell \nu$ • Search for $h \to \gamma \gamma + \rlap{\,/}E_T$, including the cases where there is a resonance in $m_{\gamma\gamma}$. Benchmark models include $h \to XY \to aYY$ $h \to XX \to aa^{(\prime)}YY$, $h \to XX \to$ $(\gamma Y)(\gamma Y)$ where Y is invisible. Here X,Y may be • $h \to XY \to \gamma YY$ where Y is invisible, giving $\gamma + \rlap{\,/}E_T$ scalars or fermions Y could be dark matter

Summary

Non-SM decays of h to new particles very well motivated

- We considered low-multiplicity prompt decays of this type
	- Extensive, but by no means a complete survey of non-SM h decays!
- Decays without MET suggest simple benchmark targets
	- h \rightarrow 2 spin 1 particles \rightarrow 4 leptons
	- h \rightarrow 2 spin 0 particles \rightarrow 4 photons
	- h \rightarrow 2 spin 0 particles \rightarrow b/ τ/μ final states
		- Need both NMSSM-like model & model with leptons enhanced
- Decays with MET ; story less complete
	- **Much more complex; poorly studied; many challenges**
	- Most promising: photons + MET, leptons + MET; look ahead to b's + MET
	- Each final state allows various decay chains \rightarrow several simplified models
		- These include NMSSM, RPV SUSY, many dark matter models

Additional Slides

Collimated Objects in h Decays

14 TeV: assumes 100 fb-1 unless "*", in which case assumes 300 fb-1

TABLE XX: Estimates for sensitivity of certain searches for collimated pairs of objects; collimation is denoted by curly brackets. See Table XII for notation and text for more details. The superscripts indicate: $* = 300$ fb⁻¹, $L =$ estimate from theory literature, $T =$ our theoretical study, $R =$ our Matt Strassler 6/12/2014 28

Benchmark Models: Beyond LO

- Easy for theorists like those on our team to generate BSM benchmark models at LO for experimenters to use.
	- Some of our team are working on this.
- N(N)LO BSM corrections to production are usually unimportant
	- **SM corrections are usually sufficient**
	- Exception: multi-doublet models where production is not SM even at LO
- But NLO corrections to the decays are beyond us!
	- We do not have branching fractions or differential distributions at NLO
- Need expert help here.

Possible Approach to MET models

■ Perhaps a "single-sided" process is most important first target model

- More like invisible Higgs, less like all-visible
- Linear in Br, not quadratic
	- Fewer parameters matter

If one can search for $h \to \psi \psi$, where ψ is invisible, then $h \to \psi \psi'$, $\psi' \psi''$ will often be easier

(but not if MET becomes too low!)

 $\overline{\Psi}'$

 $\overline{\Psi}$

 Z_D \swarrow ψ

l

l

(with *a* on- or off-shell)

h

1 photon + MET

FIG. 31: Approximate 95% C.L. upper limit on $(\sigma/\sigma_{SM}) \times Br(h \to \chi_1 \chi_2 \to \gamma + \not{E_T})$ from the results of Ref. [355], for $m_{\chi_1} = (0 \text{ GeV}, 20 \text{ GeV}, 40 \text{ GeV}) < m_{\chi_2}$. Solid lines correspond to 100% photon efficiency, and dashed lines to a (flat) 80% photon efficiency.

2 photons + MET

Weak limit from GMSB search

Approximate 95% C.L. upper limit on $(\sigma/\sigma_{SM}) \times \text{Br} (h \to \chi_2 \chi_2 \to 2\gamma + \rlap{\,/}E_T)$

2 photons + MET

FIG. 33: Approximate 95% C.L. upper limit on $(\sigma/\sigma_{SM}) \times Br(h \to 2\gamma + \not{E_T})$ from the $2\gamma + \not{E_T}$ search in [355]. The solid lines correspond to 100% photon efficiency, and the dashed lines to a (flat) 80% photon efficiency. Left: Resonant case, where $h \to aa$, one a decays to $\gamma\gamma$ and the other decays invisibly. Right: Cascade case, where $h \to \chi_1 \chi_2$, $\chi_2 \to s \chi_1$, $s \to \gamma \gamma$. Here $m_{\chi_1} = 0$ and $m_{\chi_2} = 60$ GeV (although the limit is insensitive to the particular value of m_{χ_2} as long as it is

2 leptons + MET

FIG. 34: Unit-normalized distributions of $m_T(2\ell, \not{E}_T)$. The blue dashed line shows the ATLAS prediction for SM $h \to WW^*$ events passing all selection criteria in both 7 and 8 TeV data sets [372]. The purple dotted line shows the distribution for the BSM $h \to 2\ell + \not\!\!E_T$ events arising from $h \to \chi_2 \chi_1$ at the 8 TeV LHC in the benchmark model described in the text.

$2\{ \mu^+ \mu^- \}$ -jets + MET

FIG. 35: Approximate bounds on the branching fraction for $h \to \chi_2 \chi_2$, assuming (left) Br($\chi_2 \to$ $a\chi_1$ = 1, and (right) $Br(\chi_2 \to Z_D \chi_1) = 1$, as a function of m_{χ_1} , from [335]. Here solid lines indicate $m_{\chi_2} = 50$ GeV and dotted lines $m_{\chi_2} = 60$ GeV, while red, green, and blue correspond to $m_{a,Z_D} = 3$ GeV, 1 GeV, and 0.4 GeV respectively. We use tree-level results for Br($Z_D \rightarrow \mu\mu$) (see Fig. 13) and a reference $Br(a \to \mu\mu) = 0.1$ (which can occur in Type IV 2HDM+S models, see Fig. 9).

Prioritizing: Partially Visible Decays

Examples which are experimentally "easy" but can't be reconstructed:

- γ + MET
- l^+l + MET (non-resonant leptons)
- *L⁺ L⁺ L⁺ L⁺ MET (resonant or non-resonant leptons)*
- γ γ + MET, $\gamma(\gamma\gamma)$ + MET *(resonant or non-resonant photons)*
- *…*
- **If MET is large, pick up in existing invisible searches**
- **If MET is smaller, pick up in previous visible searches**

Quite difficult to prioritize (few theory studies, many possible final states)

- Suggest:
	- Experimentalists: complete first round of invisible & fully-visible searches
	- Theorists: do some studies in coming months
	- Then compare and evaluate the opportunities

Prioritizing: Decays to Unusual Objects

- **Unusual Objects means**
	- New particles with displaced decays
	- Clusters of new particles with prompt or displaced decays
	- Soft final states
- Many of these searches cannot reconstruct *h* resonance
	- In this case, can use generic search for unusual objects -- not *h*-specific
	- Or require the jets from VBF or the lepton(s) from *Wh, Zh*
- Only thoroughly studied case is "lepton-jets"
	- Hidden particles with m < few GeV decaying to lepton pairs, hadron pairs
	- Possibly produced in clusters
- Neither theorists nor experimentalists can study this alone
	- Must communicate and do joint studies
	- Need to plan workshops for later in 2014

Dark Sectors (and/or Hidden Valleys)

Sectors of SM Singlets:

- Very little constrained by previous data!
- **Notivated by known BSM:**
	- Sterile Neutrinos (for neutrino masses)
	- **Dark Matter**
- Dark Sector (>1 particle) simple if all particles invisible
	- MET signals only

Phenomenologically identical or similar to minimal case of one particle

- (Partially?) Visible Dark Sector *(i.e. Hidden Valley-type)*
	- With multiple particles, visible or partially visible decays often possible
	- If interactions, then rich set of phenomenological signatures available

Non-SM Visible h Decays

Non-SM Partly Visible h Decays

 $h \rightarrow$ invisible

Singlets

Rich singlet sector possible, as complex as SM

(Dark Sector; Twin Higgs; NMSSM; Hidden Valley; Unparticles…)

- Minimally constrained by previous data!
- Few SM particles couple to singlets in renormalizable way
	- U(1) hidden gauge boson V coupling to U(1) hypercharge boson ($F^{\mu\nu}F^{\nu}_{\mu\nu}$)
	- Scalar S coupling to doublet Higgses (*SH*H*, *S*SH*H*)
- But then S or V can couple to other singlets in renormalizable way
	- \blacksquare E.g. $S\psi\psi$
- Or additional BSM particles can allow renormalizable couplings
	- E.g. Bino-quark-squark
- Other couplings may be induced by strong dynamics in hidden sector
- Eventually some metastable singlets may decay back to SM particles
	- This can happen promptly or well-displaced inside the LHC detectors

Singlets

Singlets (Dark Sector; Twin Higgs; NMSSM; Hidden Valley; Unparticles…)

- **Minimally constrained by previous data!**
- **Often produced in decay of something heavier**
- \blacksquare May be stable \rightarrow MET
- \blacksquare May decay to SM particle pairs \rightarrow visible
	- Couplings may be very small \rightarrow
		- Masses may be small
		- **Example 1** Lifetimes may be long
- May decay to other singlets which in turn.