Non-SM Decays of the 125 GeV Boson

Survey for the HXSWG

Exotic Decays of the 125 GeV Higgs Boson

David Curtin,¹ Rouven Essig,¹ Stefania Gori,^{2,3} Prerit Jaiswal,⁴ Andrey Katz,⁵ Tao Liu,⁶ Zhen Liu,⁷ David McKeen,^{8,9} Jessie Shelton,⁵ Matthew Strassler,¹ Ze'ev Surujon,¹ Brock Tweedie,¹⁰ and Yi-Ming Zhong^{1,*} Matt Strassler Harvard 6/13/14

Contains extensive list of references

Outline

- Agenda: Which non-SM decays covered/not covered today?
 - Decays not discussed in our recent review paper
- Motivation: Why might we expect non-SM multi-body h decays?
- Decays with no intrinsic MET (except neutrinos)
 - Promising channels
 - Benchmarks/Simplified Models
- Decays with new sources of MET
 - Complexities
 - Promising channels
 - Low MET vs High MET
 - Benchmarks/Simplified Models

Not Covered In Our Review

$h \rightarrow Z \gamma$; $h \rightarrow \tau \mu$

- These are actively under study by the experiments
- Benchmarks not needed: parameterize as a Branching Fraction [Br]

Also I will say nothing about $h \rightarrow$ invisible today; well-studied.

$h \rightarrow$ many visible particles (with or without MET)

- $h \rightarrow 6\tau$; $h \rightarrow 8b$; $h \rightarrow \ge 6\mu/e$ etc. e.g. in NMSSM
- h → 2 triplets of fermions e.g. via RPV SUSY
- h → many leptons (unclustered)
- h → complex lepton jets
 - [complex → more than two tracks, possibly including hadrons]
- Needs special discussion all its own very complicated

$h \rightarrow$ long-lived particles decaying in flight

Needs special discussion all its own – very complicated

Covered Today and in Our Review

h decays

- to at most four visible SM partons
- and involving at least one non-SM particle in intermediate step

Motivation

- h decays may serve as window to unknown particles.
 - e.g. discovery of neutrino in beta decay, other neutrinos in muon, tau decay
 - e.g. non-discovery of 4th neutrino, majorons, others in Z decay
- Dark Matter exists;
 - if it is particles, these particles may not carry SU(2) quantum numbers
 - Therefore these particles may have evaded LEP & have mass < 100 GeV
 - So possible that h → DM → invisible decay
 - Difficult to observe for Br < 10%
 - If DM part of low mass dark sector ("hidden valley"), then maybe
 - $h \rightarrow$ dark sector particles \rightarrow visible particles, with or without MET
 - Much easier to observe! Can sometimes reach Br <<< 10%
- H "Portal" easy access to dark/hidden sectors/valleys
 - H operator has dimension 1, |H|² is gauge invariant, dimension 2
 - Coupling to "dark" sector involves low dimension operator

Motivation (2)

- 125 GeV h has very narrow width
 - → small interactions with new sector can generate new decays
 - These decays could have had Br ~ 100%; could still have Br ~ 10%.
- Number of h produced is large, so potential to reach Br ~ 10⁻⁴ or better
 - 10⁶ already produced
 - Approaching 10⁸ in foreseeable future
 - But --- trigger and analysis challenges!
 - 2011-2012 data may still be useful!
- In some theories,
 - h decays are **first** BSM physics discoverable at LHC
 - Or even the **only** BSM physics discoverable at LHC14!
- Same searches might turn up new members of scalar sector (e.g. heavy H) whose decays are dominated by non-SM final states

Decays Without MET

New particles with m < m_h must be **neutral** to avoid LEP discovery

With a small loophole

We consider

- Spin 0 "a" [scalar or pseudo-scalar]
- Spin 1 "Z_D" [vector or pseudo-vector]
 - Spin ½ → h decay to 6 visible fermions or MET
 - e.g. $h \rightarrow$ neutralinos \rightarrow 6 fermions via RPV

Will move from simplest to most complex.

Four e/µ Final State

$h \rightarrow Z Z_D$

- Z_D produced & decays via kinetic mixing with γ/Z
- 2 parameters: Z_D mass, ε << 1</p>

Z_D has extremely narrow width

Published ATLAS/CMS ZZ* data allow us to extract limits

Direct limit

• Br(h \rightarrow Z X \rightarrow 4 ℓ) ~ 3 x 10⁻⁵

Including Z decay width to leptons

• Br(h \rightarrow Z X) Br(X $\rightarrow \ell \ell$) ~ 5 x 10⁻⁴

• $Br(Z_D \rightarrow \ell \ell) \sim 0.3$

• Br(h \rightarrow Z Z_D) ~ 2 x 10⁻³

Note: no information below 12 GeV

Br's for Z_D with only kinetic mixing

 $Br(Z_D \rightarrow ee) + Br(Z_D \rightarrow \mu\mu) > 20\%$ (except at ρ,ω); typically 30%

Limit ϵ for each Z_D mass

Our recast of CMS; Similar for ATLAS

6/12/2014 12

Matt Stra

Four e/µ Final State

$h \rightarrow Z_D Z_D$

- Z_D produced via mixing of h with h_D
- Z_D decays via mixing with γ/Z

Why doesn't $h \rightarrow Z Z^*$ take care of this?

- Incorrectly pair leptons in almost all eeee, μμμμ events
- Eliminate most $ee\mu\mu$ events for $m_{\ell\ell} < 40 \text{ GeV}$
- Still we can extract limits (CMS $h \rightarrow ZZ^*$, ATLAS Z^*Z^*)

$h \xrightarrow{\theta} h_{D} \xrightarrow{Z_{D}} e$ $h \xrightarrow{\theta} h_{D} \xrightarrow{z_{D}} e$ $h \xrightarrow{\theta} e$

Direct limit

• Br(h \rightarrow X X \rightarrow 4 ℓ) ~ 5 x 10⁻⁵

Assuming a Z_D with kinetic mixing

• Br(h \rightarrow Z_D Z_D) ~ 5 x 10⁻⁴

We think ATLAS/CMS could do factor of 2 - 8 better <u>now</u>, especially at low mass

Four e/µ Final State

$h \rightarrow Z_D Z_D$

- Z_D produced via mixing of h with h_D
- Z_{D} decays via mixing with γ/Z

Unless Z_{D} is long-lived, ε does not enter phenomenology

Therefore two parameters:

- 1. Z_{D} mass
- Replace θ with Br(h $\rightarrow Z_D Z_D$) 2.

3rd parameter: assumed Z_D mixing pure kinetic

This determines Z_{D} branching fractions

Model: Limit Br(h \rightarrow Z_D Z_D) vs. mass of Z_D

$h \rightarrow Z_D Z_D$

- 4*l* ; 2*l* 2j ; 4j
- (rare) final states with neutrinos

Sensitivity from 4 leptons far greater than for any other final states

2 jets \rightarrow 1 jet if low Z_D mass

Quantified (subject to further study) in our paper

Therefore it is enough to state result from 4 leptons in one model.

- Easy to convert to any other model
 - Just multiply by $[Br(Z_D \rightarrow \ell \ell)_{new} / Br(Z_D \rightarrow \ell \ell)_{old}]^2$

Recommend:

- <u>Assume</u> pure kinetic mixing \rightarrow Br(Z_D $\rightarrow \ell \ell$) determined
- 2 Parameters: $Br(h \rightarrow Z_D Z_D)$, mass of Z_D

Four Photons

h → a a

- a produced via coupling in scalar effective potential
- a decays to gluons and/or photons via loop
 - No coupling to fermions
- 3 parameters (unlike $Z_D \rightarrow ff$)
 - m_a
 - Br(h $\rightarrow a a$)
 - Br($a \rightarrow \gamma \gamma$) depends on charge/mass of loop particles
 - Colorless particles in loop:
 - Colored particles in loop:
 - General spectrum

Recommend:

- Put limits on Br(h \rightarrow a a) [Br(a $\rightarrow \gamma \gamma$)]² (expect in 10⁻⁽⁴⁻⁵⁾ range now)
- For now, ignore $Br(a \rightarrow \gamma \gamma)$; keep it unspecified. Why?
 - If we take $Br(a \rightarrow \gamma \gamma) = 1$, nothing new;
 - But if we take $Br(a \rightarrow \gamma \gamma) < 0.01$, no interesting limit until late LHC14 !
 - And it doesn't matter: 4j, 2j2γ searches maybe relevant only at ~300(?) fb⁻¹

 $Br(a \rightarrow \gamma \gamma) = 1$

 $Br(a \rightarrow \gamma \gamma) < 0.005$ usually

Anything between

An a that couples to fermions

$h \rightarrow a a$

- a produced via coupling in scalar effective potential
- *a* decays mainly to fermions via Yukawa-like couplings

Example: NMSSM -- gets lot of attention, but where is S?

- *a* branching fractions similar to comparable-mass h
- $a \rightarrow \tau\tau$ small, $\mu\mu$ negligible if $m_a > 2 m_b$

Example: More general 2HDM + singlet scalar

- Leptonic, up-type, down-type Br's may grow/shrink relative to NMSSM
- Can have $a \rightarrow \tau \tau$ large, $\mu \mu$ measurable even if $m_a > 2 m_b$

Different Branching Fractions for a

Should not restrict searches to NMSSM-motivated scenario!

Recommend use of at least two benchmark models:

- 1. NMSSM-like model
- 2. Leptonic-dominated quark-suppressed 2DHM+S model

Current Estimates of Sensitivity

			NMSSM-like		Leptonic 2HDM+S; NMSSM at low m_a			
	Projected/Current		quarks allowed		quarks suppressed			
Decay	2σ Limit	Produc-		Limit on		Limit on	N	
Mode	on $\operatorname{Br}(\mathcal{F}_i)$	tion	$\frac{\mathrm{Br}(\mathcal{F}_i)}{\mathrm{Br}(\mathrm{non-SM})}$	$\frac{\mathbf{x}}{\sigma_{\rm SM}} \cdot \operatorname{Br}(\text{non-SM})$	$\frac{\mathrm{Br}(\mathcal{F}_i)}{\mathrm{Br}(\mathrm{non-SM})}$	$\frac{\sigma}{\sigma_{\rm SM}} \cdot {\rm Br(non-SM)}$		
\mathcal{F}_i	7+8 [14] TeV	Mode		$7{+}8$ [14] TeV		$7{+}8$ [14] TeV		100 fb-1
$b\overline{b}b\overline{b}$	0.7	Wh	0.8	0.9	0	_		100 10
	[0.2]			0.2		[—]	14 TeV bo	osted Wh
$b\bar{b} au au$	> 1	VBF	0.1	> 1	0	_		
	$[\ 0.15\]$					[-]	14 TeV VBF	
$bar{b}\mu\mu$	$(2-7) \cdot 10^{-4}$	aa	3×10^{-4}	0.5 - 1	0	_		
	$[(0.6-2)\cdot 10^{-4}]$			0.2 - 0.8		[-]	14 TeV gg	→h
ττττ	0.2 - 0.4	gg	0.005	40 - 80	1	0.2 - 0.4	8 TeV gg \rightarrow h (from multilepton recast)	
	[?]			[?]		[?]		
$ au au \mu \mu$	$(3-7) \cdot 10^{-4}$	99	3×10^{-5}	10 - 20	0.007	0.04 - 0.1	$\begin{array}{c} -0.1 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
	[?]			[?]		[?]		
$\mu\mu\mu\mu$	$1 \cdot 10^{-4}$	gg	$1 \cdot 10^{-7}$	1000	$1 \cdot 10^{-5}$	$m_{a} > 2 m_{z}$	8 TeV gg \rightarrow h Important for m _a < 2 m _{τ}	
	[?]			[?]		[?]		

Summary: Decays Without MET

Decays with MET

- With MET, the number of processes and parameters grows rapidly
- Any final state can arise from many decay chains
 - Need multiple simplified models
- Low MET vs High MET
 - Very different strategies needed
 - Big differences in sensitivity as masses are varied
- Studies needed!
 - Experimental issues are subtle, so especially need experimental studies!
- Here: focus only on most promising final states
 - 1 or more photons + MET
 - 1 or more lepton pairs + MET

No evidence yet that other final states are feasible at high MET

Maybe resonant bb + MET at 300 fb⁻¹?

Challenges (1)

Often multiple possible decay chains with different kinematics

- Need several simplified models to cover kinematics
- Typically have 3 or more parameters (multiple masses, Br's)

Challenges (2)

- High MET: MET is useful in bkgd reduction, but γ/ℓ soft, inefficient
 - MET-based search, plus soft visible objects to reduce backgrounds
 - Possible kinematic features in the visible objects
- Low MET: harder γ/ℓ , but MET useless; just changes kinematics
 - Visible parton-based search, but with relaxed kinematic constraints

Example: 4 leptons + MET

- High MET: use VBF + MET search
 - + require 3 soft ℓ or + 2 SS ℓ ?
- Low MET: use 4-lepton search
 - Require all 4 l detectable
 - Do **not** demand $m_{4\ell} = 125 \text{ GeV}$
 - Look for resonances or edges in l+l- pairs

(alternate: use trilepton search, look for Z_D resonance?)

MET Story Very Incomplete

Not enough studies (by us or by others) to justify strong recommendations

- e.g. no study of $\gamma \gamma$ + MET where $\gamma \gamma$ is **resonant**
- Best search techniques are often unclear

Only have preliminary & probably pessimistic estimates of what's possible.

Even pessimistically, kinematic regimes of nice models exist where MET +

- 2*ℓ*
- 4*ℓ*
- 2γ (and presumably 4γ)

already can be realistically tested with current data

Not clear for MET + γ Nothing known for MET + 4b, etc.

Suggested Models For MET Cases

Not complete list!

including the cases where there is a resonance in $m_{\ell\ell}$. Benchmark models include $h \to d$ $XY \to Z_DYY$ or $aYY, h \to XX \to aa^{(\prime)}YY$ for $m_a < 2m_\tau, h \to XX \to Z^*Z^*YY$, where Y is invisible and Z^* is an off-shell Z boson. Occurs in NMSSM and including the cases where there is a resonance in $m_{\ell\ell}$. Benchmark models include $h \to XX \to Z_D Z_D YY, \ h \to XX \to aa^{(\prime)}YY$ for $m_a < 2m_{\tau}, \ h \to XX \to Z^*Z^*YY.$ where Y is invisible and Z^* is an off-shell Z. Also: RPV neutralinos $\rightarrow \ell \ell_V$ Benchmark models include $h \to XY \to aYY$, $h \to XX \to aa^{(\prime)}YY$, $h \to XX \to AYY$ $(\gamma Y)(\gamma Y)$ where Y is invisible. Here X,Y may be • $h \to XY \to \gamma YY$ where Y is invisible, giving $\gamma + \not\!\!\!E_T$ scalars or fermions Y could be dark matter

Summary

Non-SM decays of h to new particles very well motivated

- We considered low-multiplicity prompt decays of this type
 - Extensive, but by no means a complete survey of non-SM h decays!
- Decays without MET suggest simple benchmark targets
 - $h \rightarrow 2$ spin 1 particles $\rightarrow 4$ leptons
 - $h \rightarrow 2$ spin 0 particles $\rightarrow 4$ photons
 - $h \rightarrow 2$ spin 0 particles $\rightarrow b/\tau/\mu$ final states
 - Need both NMSSM-like model & model with leptons enhanced
- Decays with MET ; story less complete
 - Much more complex; poorly studied; many challenges
 - Most promising: photons + MET, leptons + MET; look ahead to b's + MET
 - Each final state allows various decay chains → several simplified models
 - These include NMSSM, RPV SUSY, many dark matter models

Additional Slides

Collimated Objects in h Decays

		Projected/Current		
	Decay	2σ Limit	Produc-	Comments
	Mode	on $\operatorname{Br}(\mathcal{F}_i)$	tion	
	\mathcal{F}_i	$7{+}8$ [14] TeV	Mode	
Γ	$\{\mu\mu\}\{\mu\mu\}$	$1 \cdot 10^{-5} (5 \cdot 10^{-3}) [U]$	G	CMS [335], $2m_{\mu} < m_a < 2m_{\tau}$ (CMS [375] $m_a < 5$ GeV)
Experimental &	$\{ee\}\{ee\}$	limit unclear [U]	W,G	reinterpretation of [223, 285] needed
decays to collimated	$\{\mu\mu\}X$	1 [U]	G	CMS, [375], $2m_{\mu} < m_a < 5 \text{ GeV}$
 leptons 	$\{\mu\mu\} \not\!\!\!E_T$	0.03^L [U]	W	Theory study, $[52, 53]$
 photons 	$\{\mu\mu\}\{\mu\mu\} \not\!\!\!E_T$	$1 \cdot 10^{-5} (5 \cdot 10^{-3}) [U]$	G	CMS [335], $2m_{\mu} < m_a < 2m_{\tau}$ (CMS [375] $m_a < 5$ GeV)
 jets 				however, see text for important details
	$\{ee\}\{ee\} \not\!$	limit unclear [U]	W,G	reinterpretation of [223, 285] needed
	$\{\tau\tau\}\{\mu\mu\}$	$(3-7) \cdot 10^{-4} T$ [U]	G	This work, see Sec. 6.2
G: agb production	$\{\gamma\gamma\}\{\gamma\gamma\}$	0.01 [U]	G	ATLAS [320], $m_a < 400 \text{ MeV}$
W: W/Zh production	$\{\gamma\gamma\} \not\!\!\!E_T$	U[U]		no studies
U: unknown limit	$\{gg\}\{gg\}$	$> 1 \ [0.7^L]$	W	boosted Wh [263], $m_a < 30 \text{ GeV}$
	$\{b\bar{b}\}\{b\bar{b}\}$	$0.7^T \ [0.2^L]$	W	boosted Wh [263], $m_a \sim 15 \text{ GeV}$

14 TeV:

assumes 100 fb⁻¹ unless "*", in which case assumes 300 fb⁻¹

TABLE XX: Estimates for sensitivity of certain searches for collimated pairs of objects; collimation is denoted by curly brackets. See Table XII for notation and text for more details. The superscripts indicate: $* = 300 \text{ fb}^{-1}$, L = estimate from theory literature, T = our theoretical study, R = ourrecast of experimental data.

Benchmark Models: Beyond LO

- Easy for theorists like those on our team to generate BSM benchmark models at LO for experimenters to use.
 - Some of our team are working on this.
- N(N)LO BSM corrections to production are usually unimportant
 - SM corrections are usually sufficient
 - Exception: multi-doublet models where production is not SM even at LO
- But NLO corrections to the decays are beyond us!
 - We do not have branching fractions or differential distributions at NLO
- Need expert help here.

Possible Approach to MET models

- Perhaps a "single-sided" process is most important first target model
 - More MET, fewer objects
 - More like invisible Higgs, less like all-visible
 - Linear in Br, not quadratic
 - Fewer parameters matter

If one can search for $h \rightarrow \psi' \psi$, where ψ is invisible, then $h \rightarrow \psi' \psi'$, $\psi' \psi''$ will often be easier

(but not if MET becomes too low!)

⁽with a on- or off-shell)

h

1 photon + MET

FIG. 31: Approximate 95% C.L. upper limit on $(\sigma/\sigma_{SM}) \times \text{Br}(h \to \chi_1 \chi_2 \to \gamma + \not\!\!\!E_T)$ from the results of Ref. [355], for $m_{\chi_1} = (0 \text{ GeV}, 20 \text{ GeV}, 40 \text{ GeV}) < m_{\chi_2}$. Solid lines correspond to 100% photon efficiency, and dashed lines to a (flat) 80% photon efficiency.

2 photons + MET

Weak limit from GMSB search

2 photons + MET

FIG. 33: Approximate 95% C.L. upper limit on $(\sigma/\sigma_{SM}) \times \text{Br}(h \to 2\gamma + \not\!\!\!E_T)$ from the $2\gamma + \not\!\!\!E_T$ search in [355]. The solid lines correspond to 100% photon efficiency, and the dashed lines to a (flat) 80% photon efficiency. Left: Resonant case, where $h \to aa$, one *a* decays to $\gamma\gamma$ and the other decays invisibly. **Right:** Cascade case, where $h \to \chi_1\chi_2, \chi_2 \to s\chi_1, s \to \gamma\gamma$. Here $m_{\chi_1} = 0$ and $m_{\chi_2} = 60$ GeV (although the limit is insensitive to the particular value of m_{χ_2} as long as it is

2 leptons + MET

FIG. 34: Unit-normalized distributions of $m_T(2\ell, \not\!\!E_T)$. The blue dashed line shows the ATLAS prediction for SM $h \to WW^*$ events passing all selection criteria in both 7 and 8 TeV data sets [372]. The purple dotted line shows the distribution for the BSM $h \to 2\ell + \not\!\!E_T$ events arising from $h \to \chi_2 \chi_1$ at the 8 TeV LHC in the benchmark model described in the text.

6/12/2014 34

2 {μ⁺μ⁻}-jets + MET

FIG. 35: Approximate bounds on the branching fraction for $h \to \chi_2 \chi_2$, assuming (left) Br($\chi_2 \to a\chi_1$) = 1, and (right) Br($\chi_2 \to Z_D \chi_1$) = 1, as a function of m_{χ_1} , from [335]. Here solid lines indicate $m_{\chi_2} = 50$ GeV and dotted lines $m_{\chi_2} = 60$ GeV, while red, green, and blue correspond to $m_{a,Z_D} = 3$ GeV, 1 GeV, and 0.4 GeV respectively. We use tree-level results for Br($Z_D \to \mu\mu$) (see Fig. 13) and a reference Br($a \to \mu\mu$) = 0.1 (which can occur in Type IV 2HDM+S models, see Fig. 9).

Prioritizing: Partially Visible Decays

Examples which are experimentally "easy" but can't be reconstructed:

- γ + MET
- *l*⁺*l*⁺ + MET (non-resonant leptons)
- $l^+ l l^+ l + MET$ (resonant or non-resonant leptons)
- $\gamma\gamma$ + MET, $\gamma(\gamma\gamma)$ + MET (resonant or non-resonant photons)
- ...
- If MET is large, pick up in existing invisible searches
- If MET is smaller, pick up in previous visible searches

Quite difficult to prioritize (few theory studies, many possible final states)

- Suggest:
 - Experimentalists: complete first round of invisible & fully-visible searches
 - Theorists: do some studies in coming months
 - Then compare and evaluate the opportunities

Prioritizing: Decays to Unusual Objects

- Unusual Objects means
 - New particles with displaced decays
 - Clusters of new particles with prompt or displaced decays
 - Soft final states
- Many of these searches cannot reconstruct *h* resonance
 - In this case, can use generic search for unusual objects -- not h-specific
 - Or require the jets from VBF or the lepton(s) from *Wh*, *Zh*
- Only thoroughly studied case is "lepton-jets"
 - Hidden particles with m < few GeV decaying to lepton pairs, hadron pairs
 - Possibly produced in clusters
- Neither theorists nor experimentalists can study this alone
 - Must communicate and do joint studies
 - Need to plan workshops for later in 2014

Dark Sectors (and/or Hidden Valleys)

Sectors of SM Singlets:

- Very little constrained by previous data!
- Motivated by known BSM:
 - Sterile Neutrinos (for neutrino masses)
 - Dark Matter
- Dark Sector (>1 particle) simple if all particles invisible
 - MET signals only

Phenomenologically identical or similar to minimal case of one particle

- (Partially?) Visible Dark Sector (i.e. Hidden Valley-type)
 - With multiple particles, visible or partially visible decays often possible
 - If interactions, then rich set of phenomenological signatures available

Non-SM Visible h Decays

Non-SM Partly Visible h Decays

 $h \rightarrow invisible$

Singlets

Rich singlet sector possible, as complex as SM

(Dark Sector; Twin Higgs; NMSSM; Hidden Valley; Unparticles...)

- Minimally constrained by previous data!
- Few SM particles couple to singlets in renormalizable way
 - U(1) hidden gauge boson V coupling to U(1) hypercharge boson $(F^{\mu\nu}F'_{\mu\nu})$
 - Scalar S coupling to doublet Higgses (SH*H, S*SH*H)
- But then S or V can couple to other singlets in renormalizable way
 - E.g. Sψψ
- Or additional BSM particles can allow renormalizable couplings
 - E.g. Bino-quark-squark
- Other couplings may be induced by strong dynamics in hidden sector
- Eventually some metastable singlets may decay back to SM particles
 - This can happen promptly or well-displaced inside the LHC detectors

Singlets

Singlets (Dark Sector; Twin Higgs; NMSSM; Hidden Valley; Unparticles...)

- Minimally constrained by previous data!
- Often produced in decay of something heavier
- May be stable → MET
- May decay to SM particle pairs → visible
 - Couplings may be very small →
 - Masses may be small
 - Lifetimes may be long
- May decay to other singlets which in turn...