Survey of (and update on) the Higgs singlet extension

Tania Robens

based on

G.M. Pruna, TR (PRD 88 (2013) 115012)
 D. Lopez-Val, TR, arXiv:1406.1043
 TR, T. Stefaniak, work in progress

TU Dresden

Workshop of LHC Higgs Cross Section Working Group CERN 13.6.2014

Tania Robens

Singlet

< □ > < □ > < □ > < ⊇ > < ⊇ >
 CERN, 13.6.2014

Higgs Singlet extension (aka The Higgs portal)

The model

• Singlet extension:

simplest extension of the SM Higgs sector

- add an additional real scalar, singlet under SM gauge groups (many people worked on this, standard Ref: Schabinger, Wells, '05)
- here: no hidden sector interactions
- Singlet acquires VeV x
- physical states related via **mixing angle** $\sin \alpha$ ($m_h < m_H$):

$$\left(\begin{array}{c} \mathbf{h} \\ \mathbf{H} \end{array}\right) = \left(\begin{array}{c} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{array}\right) \left(\begin{array}{c} \tilde{h} \\ h' \end{array}\right),$$

• 5 parameters

$$\mathbf{m}_{\mathbf{h}}, \, \mathbf{m}_{\mathbf{H}}, \, \mathrm{sin} \, lpha, \, \mathbf{v}, \, \mathrm{tan} \, eta \, = \, rac{\mathbf{v}}{\mathbf{x}}$$

• 2 fixed, 3 free, $(m_h || m_H) = 125.7 \, \text{GeV}$

Tania Robens

Singlet

CERN, 13.6.2014

Potential

$\mathbf{V} = -\mathbf{m}^{2}\mathbf{H}^{\dagger}\mathbf{H} - \mu^{2}\,\chi^{2} + \lambda_{1}(\mathbf{H}^{\dagger}\mathbf{H})^{2} + \lambda_{2}\,\chi^{4} + \lambda_{3}\mathbf{H}^{\dagger}\mathbf{H}\,\chi^{2},$

Tania Robens

Singlet

<ロ><合><合><き><き><き><き><き><き><き>< CERN, 13.6.2014 **Phenomenology** (in the following: focus on $m_h \sim 126 \, {
m GeV}$)

- SM-like couplings of light/ heavy Higgs: rescaled by $\sin \alpha$, $\cos \alpha$
- in addition: **new physics channel:** $H \rightarrow h h$

 $\Gamma_{\rm tot}(H) = \sin^2 \alpha \, \Gamma_{\rm SM}(H) + \, \Gamma_{H \to h \, h},$

• SM like decays parametrized by

$$\kappa \equiv \frac{\sigma_{\rm BSM} \times {\rm BR}_{\rm BSM}}{\sigma_{\rm SM} \times {\rm BR}_{\rm SM}} = \frac{\sin^4 \alpha \, \Gamma_{\rm tot,SM}}{\Gamma_{\rm tot}}$$

• new physics channel parametrized by

$$\kappa' \equiv \frac{\sigma_{\text{BSM}} \times \text{BR}_{H \to hh}}{\sigma_{\text{SM}}} = \frac{\sin^2 \alpha \,\Gamma_{H \to hh}}{\Gamma_{\text{tot}}}$$

Tania Robens

Theoretical and experimental constraints on the model

our studies: $m_{h,H} = 125.7 \,\mathrm{GeV}, \, 0 \,\mathrm{GeV} \leq m_{H,h} \leq 1 \,\mathrm{TeV}$

we considered

- Iimits from perturbative unitarity
- **perturbativity** of the couplings (up to certain scales*)
- vacuum stability and minimum condition (up to certain scales*)
- **6** corrections to m_W at NLO \implies !! NEW !! \Leftarrow
- ollider limits using HiggsBounds
- **o** measurement of **light Higgs signal rates** using HiggsSignals
- (*): only for $m_h = 125.7 \, {
 m GeV}$

A E A E AQA

Results

• strongest constraints:

 $m_H \gtrsim 800 \,{
m GeV}$: perturbativity of couplings $m_H \in [200; 800] {
m GeV}$: m_W @ NLO $m_H \in [130; 200] {
m GeV}$: experimental searches $m_h \lesssim 120 \,{
m GeV}$: SM-like Higgs coupling rates (+ LEP)

 \Rightarrow κ \leq 0.25 for all masses considered here

 $\Gamma_{tot} \lesssim 0.02 \, m_H$

 \Rightarrow Highly (??) suppressed, narrow(er) heavy scalars \Leftarrow

⇒ new (easier ?) strategies needed wrt searches for SM-like Higgs bosons in this mass range ⇐

 \Rightarrow (partially) already correctly treated in experimental

searches (variation of Γ by hand...) \leftarrow \leftarrow \equiv \rightarrow \leftarrow \equiv \rightarrow \sim

Tania Robens

Singlet

CERN, 13.6.2014

NLO corrections to m_W (D. Lopez-Val, TR, arXiv:1406.1043)

Contribution to m_W for different Higgs masses

Tania Robens

Singlet

CERN, 13.6.2014

Combined limits on $|\sin \alpha|$!! PRELIMINARY !! (D. Lopez-Val, TR, arXiv:1406.1043, and TR, T. Stefaniak, to appear)

several bounds on $|\sin \alpha|$

limits on κ , Γ plane from all constraints

(日) (同) (三) (三)

CERN. 13.6.2014

Results from generic scans and predictions for LHC 14

(TR, T. Stefaniak, in preparation)

 1σ , 2σ , allowed SN

BSM decay to hh

- Singlet extension: simplest extension of the SM Higgs sector (cf. also YR3, Snowmass report)
- constraints on parameter space: m_W, experiment, signal strength of light Higgs, perturbativity of the couplings
- quite narrow widths wrt SM-like Higgses
- did **not** talk about $m_h \leq 120 \, {
 m GeV} \Rightarrow$ quite interesting results

\Longrightarrow Happy to contribute to WG activities \Longleftarrow

\Rightarrow STAY TUNED \Leftarrow

Appendix

Tania Robens

Singlet

イロン イヨン イヨン イヨン

CERN, 13.6.2014

3

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

CERN. 13.6.2014

The model

Higgs Singlet extension (aka The Higgs portal)

The model

• Singlet extension:

simplest extension of the SM Higgs sector

 add an additional scalar, singlet under SM gauge groups (further reduction of terms: impose additional symmetries)
 ⇒ potential (*H* doublet, *χ* real singlet)

 $\mathbf{V} = -\mathbf{m}^2 \mathbf{H}^{\dagger} \mathbf{H} - \mu^2 \, \chi^2 + \lambda_1 (\mathbf{H}^{\dagger} \mathbf{H})^2 + \lambda_2 \, \chi^4 + \lambda_3 \mathbf{H}^{\dagger} \mathbf{H} \, \chi^2,$

- collider phenomenology studied by many authors: Schabinger, Wells; Patt, Wilzcek; Barger ea; Bhattacharyya ea; Bock ea; Fox ea; Englert ea; Batell ea; Bertolini/ McCullough; ...
- our approach: minimal: no hidden sector interactions
- equally: Singlet acquires VeV

Tania Robens

Singlet

The model

Singlet extension: free parameters in the potential

VeVs:
$$H \equiv \begin{pmatrix} 0\\ rac{ ilde{h}+ extsf{v}}{\sqrt{2}} \end{pmatrix}, \ \chi \equiv rac{ ilde{h}'+ extsf{x}}{\sqrt{2}}.$$

• potential: 5 free parameters: 3 couplings, 2 VeVs

 $\lambda_1,\,\lambda_2,\,\lambda_3,\,v,\,x$

rewrite as

 $\mathbf{m}_{\mathbf{h}}, \mathbf{m}_{\mathbf{H}}, \sin \alpha, \mathbf{v}, \tan \beta$

• fixed, free

 $\sin \alpha$: mixing angle, $\tan \beta = \frac{v}{x}$

• physical states $(m_h < m_H)$:

$$\begin{pmatrix} \mathbf{h} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \tilde{h} \\ h' \end{pmatrix},$$
Singlet
CERN 13.6.2014

Tania Robens

Comments on constraints (1) - Perturbativity issues

Perturbative unitarity:

- tests combined system of all (relevant) 2 \rightarrow 2 scattering amplitudes for $s \rightarrow \infty$
- makes sure that the largest eigenvalue for the "0"-mode partial wave of the diagnolized system ≤ 0.5
- "crude" check that unitarity is not violated (in the end: all "beaten" by perturbativity of running couplings)
 Perturbativity of couplings
- make sure that no coupling \geq 4 π ("typical" loop prefactor $^{-0.5}$)
- at ew scale: perturbative unitarity stronger

Tania Robens

Singlet

CERN, 13.6.2014

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Comments on constraints (2) - running couplings and vacuum

Vacuum stability and perturbativity of couplings at arbitrary scales

- clear: vacuum should be stable for large scales
- unclear: do we need ew-like breaking everywhere ? perturbativity ?
- \Rightarrow check at relative low scale (cf next slide)
- ⇒ bottom line: small mixings excluded from stability for larger scales (for $m_H \leq 1 \,\mathrm{TeV}$!! for the model-builders...)
 - arbitrary large m_H can cure this !! cf Lebedev; Elias-Miro ea. Out of collider range though (~ $10^8 \,\mathrm{GeV}$)

(...like SUSY, this model can never be excluded...)

 perturbativity of couplings severely restricts parameter space, even for low scales

Tania Robens

Singlet

RGE running in more detail

Question: at which scale did we require perturbativity ? Answer: "just above" the SM breakdown (other answers equally valid...)

- RGEs for this model well-known (cf eg Schabinger, Wells)
- decoupling ($\lambda_3 = 0$): recover SM case
- in our setup: $\mu_{\text{SM,break}} \sim 6.3 \times 10^{10} \, \text{GeV}$ (remark: just simple NLO running)
- we took: $\mu_R \sim 1.2 \times 10^{11} \, {
 m GeV}$

(higher scales \iff stronger constraints)

- obvious: for $m_H = 125.7 \,\mathrm{GeV}$, breakdown "immediate" when going to $\mu_{\mathrm{run}} > v$
- \Rightarrow disregard constraints from running in this case

Tania Robens

Singlet

CERN, 13.6.2014

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Limits for $m_H \geq 600 \, { m GeV}$

for sin $\alpha \leq 0.23$: only λ_2 running important

(sideremark: here, 1 σ constraint on mixing from μ ; relaxed and improved in newer work, just as an example here)

Tania Robens

Singlet

CERN, 13.6.2014

(日) (同) (三) (三)

Could we have seen them ?? YES !!

(at least they could have been produced...)

all numbers below: $\sqrt{S_{hadr}}$ = 7TeV, $\int \mathcal{L}$ = 25 fb⁻¹

$m_H[{\rm GeV}]$	κ_{max}	$\# gg \sim$	$\# VBF \sim$
600	0.04	330	60
700	0.04	130	40
800	0.04	60	20
900	0.03	20	12
1000	0.025	8	7

maximal number of events from production $\times\,$ decay to SM-like final states (running conditions at low scale)

(cross sections from "Handbook of LHC Higgs Cross sections I", Dittmaier ea)

for specific final state, multiply with SM-like BR (LO approx)

 \implies Model awaits discovery !! (optimist) \Leftarrow

(or at least limits...) (pessimist)

Limits at Planck_scale

Comments on constraints

assume that the model is valid up to $\mu_{\rm run} \sim 10^{19}\,{\rm GeV}$ (not always well motivated)

- naturally: parameter space more restricted
- translates to $\kappa \lesssim 0.03$ for $m_H = 600 \,\mathrm{GeV}$ (25% decrease)
- now: μ no longer relevant, only constraint from perturbativity of λ_1, λ_2

Tania Robens

Singlet

CERN, 13.6.2014

イロト イヨト イヨト

New physics channel

What about $H \rightarrow hh$??

all numbers below:
$$\sqrt{S_{hadr}} = 7 \text{TeV}, \int \mathcal{L} = 25 \, \text{fb}^{-1}$$
,

$m_H [{ m GeV}]$	$\kappa'_{\sf max}$	$\#$ gg \sim	\mid #VBF \sim	allowed scale factor and total width, t=37
600	0.013	110	20	
700	0.012	40	11	
800	0.010	14	6	0.00
900	0.007	4	3	0.000
1000	0.005	2	1	"ο 5 % 15 20 25 Γ

maximal number of events from $H \rightarrow h h \left(\kappa' = \frac{\sigma_{hh}^{BSM}}{\sigma_{H,prod}}\right)$ (cross sections from "Handbook of LHC Higgs Cross sections I", Dittmaier ea) for specific final state, multiply with SM-like BR for m_h "naively": many b-jets with $m_{bb} \sim 125 \,\text{GeV}$, or $bb \gamma \gamma$, or... (e.g. Cooper ea.: $b\bar{b}b\bar{b}$ final state @8 TeV)

Tania Robens

Singlet

CERN, 13.6.2014

Low-mass case

What about the "inverse" scenario, ie. $m_H = 125.7 \, { m GeV}$

mainly ruled out by LEP and/ or χ^2 fit from HiggsSignals

$m_H[{ m GeV}]$	$ \sin \alpha _{\min, exp}$	$ \sin lpha _{\min, 2\sigma}$	$(aneta)_{\sf max}$
110	0.82	0.89	9.2
100	0.86		10.1
90	0.91		11.2
80	0.98		12.6
70	0.99		14.4
60	0.98	\gtrsim 0.99	16.8
50	0.99	\gtrsim 0.99	20.2
40	0.99	$\gtrsim 0.99$	25.2

Table: Limits on sin α and tan β in the low mass scenario. Upper limit on tan β from perturbative unitarity. (-- means no additional constraint) (side remark: for $m_h \gtrsim 60 \,\text{GeV}$, tan β irrelevant for collider observables) Tania Robens Singlet CERN, 13.6.2014 Other NLO

Higher order corrections in the Singlet extension (1) - QCD

Question: What are the changes in higher order corrections wrt the current (SM-like) description ??

Motivation: SM-like searches impossible wo higher orders \Rightarrow can this be transferred to BSM ??

- \bullet remember: every SM-like coupling is rescaled by $\sin\alpha$
- \Rightarrow every $(\alpha_s, y_i, ...)$ with heavy Higgs $\Rightarrow (\alpha_s, y_i, ...) \times \sin^2 \alpha$
- \Rightarrow naive approach:
 - higher order (differential/ non-differential) K-factors remain the same, only tree level production/ decay needs rescaling
- \Rightarrow would lead to same scaling with κ , ... as tree level, with (differential) higher order K-factors as in SM

Tania Robens

3.0

CERN 1362014

Other NLO

Higher order corrections in the Singlet extension (2b) - EW

Some comments re full NLO treatment...

- SM-sector: contributions from new heavy Higgs to finite part of gauge Boson propagators
- \Rightarrow influences renormalization of m_W, m_Z
 - other (possibly important) effects: one-loop contribution to

$H \rightarrow t \, \overline{t}$

 \Rightarrow could lead to modifications in $t \, \overline{t}$ production

(remember: production suppressed by $\sin^2 \alpha$, $\sigma \lesssim 0.(0) 1 \, \mathrm{pb}$ for (7) 14 TeV)

Tania Robens

Other NLO

Higher order corrections in the Singlet extension (2d) - EW

- $H \rightarrow t \, \overline{t}$: corrections could be sizeable
- along similar lines: loop contributions to

$\textbf{H} \ \rightarrow \ \textbf{W} \ \textbf{W}$

from *H h h* coupling (for **production in VBF** and **decay**)

- \Rightarrow probably not as important as decay to tops, but still large(ish)
 - also: $H \rightarrow g g,...$
 - probably/ maybe all subdominant wrt "standard" (QCD) NLO effects...

Tania Robens

Singlet

CERN, 13.6.2014

▶ < E ▶ E

Coupling and mass relations

$$m_h^2 = \lambda_1 v^2 + \lambda_2 x^2 - \sqrt{(\lambda_1 v^2 - \lambda_2 x^2)^2 + (\lambda_3 x v)^2},$$
 (1)

$$m_{H}^{2} = \lambda_{1}v^{2} + \lambda_{2}x^{2} + \sqrt{(\lambda_{1}v^{2} - \lambda_{2}x^{2})^{2} + (\lambda_{3}xv)^{2}}, \quad (2)$$

$$\sin 2\alpha = \frac{\lambda_3 x v}{\sqrt{(\lambda_1 v^2 - \lambda_2 x^2)^2 + (\lambda_3 x v)^2}},$$

$$\cos 2\alpha = \frac{\lambda_2 x^2 - \lambda_1 v^2}{\sqrt{(\lambda_1 v^2 - \lambda_2 x^2)^2 + (\lambda_3 x v)^2}}.$$
(3)

Tania Robens

Singlet

< □ > < □ > < □ > < ⊇ > < ⊇ >
 CERN, 13.6.2014

Э

Tools which can do it ?? (incomplete list)

("it"=L0,NL0,...)

- LO: any tool talking to FeynRules (in principle)/ LanHep (in practice)
- implemented and run: **CompHep** (M. Pruna), **Sherpa** (±) (would need some modification, T. Figy), privately modified codes (??)
- NLO: (mb) a modified version of **aMC@NLO** (R. Frederix) ?? (production only; might be important for VBF)
- new tool in the MadGraph environment (Artoisenet ea, 06/13): QCD-part of NLO
- complete higher orders: would need to be implemented in respective tools (I am not aware of any at the moment)