Higgs property measurements for Run 2: kappa's and beyond

Michael Duehrssen
LHC Higgs XS WG workshop, 12th June 2014
Higgs measurements from the experimental point of view

- Rate and coupling measurements
 - Indirect width measurement in high mass WW+ZZ
 - Direct width measurement
- Mass
- Separation of production modes
- Spin/CP hypothesis tests and CP measurements
- Measurements of differential distributions
Higgs measurements from the experimental point of view

- All these measurements tell us something about the observed Higgs (but also need some assumptions)
- Many measurements use the same data → this makes it difficult to extract the big picture
Higgs measurements from the experimental point of view

- All these measurements tell us something about the observed Higgs
- Many measurements use the same data → this makes it difficult to extract the big picture
- The same applies to beyond Higgs searches/measurements
Focus of the light mass sub-group so far

Rate and coupling measurements

... and the big picture: EFT

(Also other topics were discussed, but by far not as extensive as couplings, Spin/CP and EFT)
Focus of the light mass sub-group so far

- Define a common framework between the theory community and ATLAS+CMS on how to do Higgs coupling fits in Run 1.
 - Includes proposals for benchmark parameterizations for coupling measurements

- Discussion of Higgs Spin and CP hypothesis tests and CP measurements
 - Proposed benchmark parametrizations
 - Anomalous couplings vs. EFT discussion

- Start of the work for an EFT approach to Higgs (coupling) measurements in Run 2
 - EFT approach goes beyond the Higgs sector: Allows a consistent treatment of a wide range of measurements!
 - Can go beyond leading order and include EWK corrections
 - Naturally includes CP odd operators
 - But: several basis choices possible (all equivalent)
Couplings: κ-framework

- Define a framework in which to look for deviations from the SM in the Higgs coupling sector. Focus only on one Higgs!
- Make sure that the theory community understands exactly which definitions are used and how to interpret the results.
- Experimental precisions on observed rates are at best $O(20\%)$ in Run 1. Try to keep it simple:
 - Introduce one scale factor κ per SM particle with observable “Higgs coupling” at the LHC: κ_W, κ_Z, κ_t, κ_b, κ_τ, κ_μ, κ_γ, κ_g, κ_H.

![Diagram](image.png)
Define a framework in which to look for deviations from the SM in the Higgs coupling sector. Focus only on one Higgs!

Make sure that the theory community understands exactly which definitions are used and how to interpret the results.

Experimental precisions on observed rates are at best $O(20\%)$ in Run 1. Try to keep it simple:

- Introduce one scale factor κ per SM particle with observable "Higgs coupling" at the LHC: $\kappa_W, \kappa_Z, \kappa_t, \kappa_b, \kappa_\tau, \kappa_\mu, \kappa_\gamma, \kappa_g, \kappa_H$

Very "experimental" friendly definition:

- SM Higgs analysis can be used out-of-the-box after some κ-dependent rescaling of expected rates
- Natural evolution from simple to complicated fits
Define a framework in which to look for deviations from the SM in the Higgs coupling sector. Focus only on one Higgs!

Make sure that the theory community understands exactly which definitions are used and how to interpret the results.

Experimental precisions on observed rates are at best $O(20\%)$ in Run 1. Try to keep it simple:

- Introduce one scale factor κ per SM particle with observable “Higgs coupling” at the LHC: κ_W, κ_Z, κ_t, κ_b, κ_τ, κ_μ, κ_γ, κ_g, κ_H

- Use best available SM calculation for cross-section and BR \rightarrow we want to look for deviations from the SM!

- Example:

$$\begin{aligned}
\sigma \cdot \text{BR} (gg \rightarrow H \rightarrow \gamma\gamma) &= \sigma_{\text{SM}} (gg \rightarrow H) \cdot \text{BR}_{\text{SM}} (H \rightarrow \gamma\gamma) \cdot \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2} \\
\end{aligned}$$

Include all higher order QCD and EW corrections! These corrections are also scaled with κ!
Couplings: κ-framework

• Define a framework in which to look for deviations from the SM in the Higgs coupling sector. Focus only on one Higgs!

• Make sure that the theory community understands exactly which definitions are used and how to interpret the results

• Experimental precisions on observed rates are at best $O(20\%)$ in Run 1. Try to keep it simple:
 • Introduce one scale factor κ per SM particle with observable “Higgs coupling” at the LHC: κ_W, κ_Z, κ_t, κ_b, κ_τ, κ_μ, κ_γ, κ_g, κ_H

• Needs assumptions:
 • Only one low mass state ($m_H \sim 125$ GeV): no other “signals”
 • Zero/narrow width approximation
 • Only modification of scalar coupling strength: no change to production and decay kinematics of Higgs processes

• All simplifications/assumptions should be valid as long as all results agree with the SM expectations

→ the κ-framework does not give a true measurement!
NLO corrections are not treated properly. The known SM EWK corrections are just scaled with κ.

- EWK corrections are expected at the $\sim 10\%$ level → uncritical as long as experimental precision is $>>10\%$
- but we are getting close...

- Best cases $15-20\%$ uncertainty on κ^2 with Run 1
κ-framework: known limitations

- NLO corrections are not treated properly. The known SM EWK corrections are just scaled with κ
 - EWK corrections are expected at the ~10% level
 → uncritical as long as experimental precision is >>10%
 → but we are getting close...

- And expected to get to <10% with Run 2 and beyond

<table>
<thead>
<tr>
<th>S-LHC projections</th>
<th>K_gK_z/\bar{K}_H</th>
<th>K_w/\bar{K}_Z</th>
<th>K_ν/\bar{K}_Z</th>
<th>K_g/K_z</th>
<th>K_ν/K_z</th>
<th>K_t/K_z</th>
<th>K_μ/K_z</th>
<th>κ_{zy}/K_z</th>
<th>K_t/K_g</th>
</tr>
</thead>
<tbody>
<tr>
<td>300fb⁻¹ ATLAS</td>
<td>[3,6]</td>
<td>[4,5]</td>
<td>[5,11]</td>
<td>[11,12]</td>
<td>N/a</td>
<td>[11,13]</td>
<td>[20,22]</td>
<td>[78,78]</td>
<td>[17,18]</td>
</tr>
<tr>
<td>CMS</td>
<td>[4,6]</td>
<td>[4,7]</td>
<td>[5,8]</td>
<td>[6,9]</td>
<td>[8,11]</td>
<td>[6,9]</td>
<td>[22,23]</td>
<td>[40,42]</td>
<td>[13,14]</td>
</tr>
<tr>
<td>3000fb⁻¹ ATLAS</td>
<td>[2,5]</td>
<td>[2,3]</td>
<td>[2,7]</td>
<td>[5,6]</td>
<td>N/a</td>
<td>[7,10]</td>
<td>[6,9]</td>
<td>[29,30]</td>
<td>[6,7]</td>
</tr>
<tr>
<td>CMS</td>
<td>[2,5]</td>
<td>[2,3]</td>
<td>[2,5]</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>[2,4]</td>
<td>[7,8]</td>
<td>[12,12]</td>
<td>[6,8]</td>
</tr>
</tbody>
</table>
\kappa\text{-framework: known limitations}

- NLO corrections are not treated properly. The known SM EWK corrections are just scaled with \kappa

- Changes to the W- and Z-couplings would likely also cause changes to event kinematics
 - Visible in H\rightarrow WW and H\rightarrow ZZ decays
 - Visible in VBF and VH production
→ \kappa\text{-framework is good for inclusive quantities}
→ but a coupling strength is not sufficient for distributions
NLO corrections are not treated properly. The known SM EWK corrections are just scaled with κ.

Changes to the W- and Z-couplings would likely also cause changes to event kinematics.

If several couplings contribute to a Higgs process, some kinematic dependence is expected. Examples:

- $gg\rightarrow H$ production:
 - At low p_T the b-t-interference contributes with $\sim -7\%$
 - At high $p_T \sim 100\%$ t-loop in the SM. But would expect largest influence from heavy BSM particles here

- tH production:
 - size of t-, W- and interference terms depends on event selection
So far the angular correlations in $H \to ZZ$, $H \to WW$ and $H \to \gamma\gamma$ are used to test alternative Spin/CP hypothesis.

Benchmarks/examples for

<table>
<thead>
<tr>
<th>scenario</th>
<th>X production</th>
<th>$X \to VV$ decay</th>
<th>comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^+_m</td>
<td>$gg \to X$</td>
<td>$g_1^{(0)} \neq 0$ in Eq. (200)</td>
<td>SM Higgs boson scalar</td>
</tr>
<tr>
<td>0^+_h</td>
<td>$gg \to X$</td>
<td>$g_2^{(0)} \neq 0$ in Eq. (200)</td>
<td>scalar with higher-dim. operators</td>
</tr>
<tr>
<td>0^-</td>
<td>$gg \to X$</td>
<td>$g_4^{(0)} \neq 0$ in Eq. (200)</td>
<td>pseudo-scalar</td>
</tr>
<tr>
<td>1^+</td>
<td>$\bar{q}q \to X$</td>
<td>$g_2^{(1)} \neq 0$ in Eq. (202)</td>
<td>exotic pseudo-vector</td>
</tr>
<tr>
<td>1^-</td>
<td>$\bar{q}q \to X$</td>
<td>$g_1^{(1)} \neq 0$ in Eq. (202)</td>
<td>exotic vector</td>
</tr>
<tr>
<td>2^+_m</td>
<td>$g_1^{(2)} \neq 0$ in Eq. (203)</td>
<td>$g_1^{(2)} = g_5^{(2)} \neq 0$ in Eq. (203)</td>
<td>graviton-like tensor with min. couplings</td>
</tr>
<tr>
<td>2^+_h</td>
<td>$g_4^{(2)} \neq 0$ in Eq. (203)</td>
<td>$g_4^{(2)} \neq 0$ in Eq. (203)</td>
<td>tensor with higher-dimension operators</td>
</tr>
<tr>
<td>2^-_h</td>
<td>$g_8^{(2)} \neq 0$ in Eq. (203)</td>
<td>$g_8^{(2)} \neq 0$ in Eq. (203)</td>
<td>“pseudo-tensor”</td>
</tr>
</tbody>
</table>

documented in YR3 but mixings possible.
For Spin 0, CP measurements are a natural continuation of the 0^+ and 0^- hypothesis tests.

Can be viewed in the amplitude (JHU) or EFT picture (MG5)
• So far the angular correlations in $H \rightarrow ZZ$, $H \rightarrow WW$ and $H \rightarrow \gamma\gamma$ are used to test alternative Spin/CP hypothesis

• The measurements do NOT use the observed rates, just decay correlations!
 • Results in some inconsistencies, e.g. tested Spin 2 models predict rates which are incompatible with the observation

• Ongoing discussion for Spin 2 models:
 • Additional (more consistent?) benchmarks
 • General measurements of helicity amplitudes

• For Spin 0 measurements:
 • Goal is to merge with the coupling measurements using a consistent EFT approach with CP odd operators
 • $H \rightarrow \tau\tau$ will be crucial, as it allows to probe CP in fermion couplings
EFT (Higgs) measurements

- Effective Lagrangian approach, obtained from integrating out heavy particles. Assumption: new physics appears at scale \(\Lambda \gg m_H \sim 125 \text{ GeV} \)
EFT (Higgs) measurements

- Systematic approach: expansion in inverse powers of Λ:

\[\Delta \mathcal{L} = \sum_i \frac{a_i}{\Lambda^2} \mathcal{O}_{i}^{d=6} + \sum_j \frac{a_j}{\Lambda^4} \mathcal{O}_{j}^{d=8} + \ldots \]

- Minimal complete basis of dimension-6 operators has 59 independent operators (for one fermion family)
 - Allows to include (and calculate) higher order corrections
 - Allows consistent treatment of all measurements
 - SM precision observables
 - Higgs rate measurements
 - Higgs differential distributions and angular correlations (the coupling tensor structure is naturally included)
 - Anomalous non-Higgs coupling measurements
 - Systematic and coherent approach to organize the expansion in ratio of the momentum over the new physics scale Λ

- Basis choice is not unique \rightarrow need “rotation” functions
EFT challenges

• What about light BSM particles?
 Complementary approach between
 • EFT measurements and
 • analysis in specific BSM benchmark models (e.g. MSSM) with light degrees of freedom
EFT challenges

- What about light BSM particles?

- EFT approach is “theory” friendly
 - Everything emerges from one Lagrangian
 - Experimental analysis will have to grow in order to take the full variability of the EFT approach into account:
 - simultaneous rate and differential measurements in several observables
 - A simple κ-like scaling of the SM analysis is not possible, as signal (and background) acceptances can change with modified kinematic distributions
EFT challenges

- What about light BSM particles?
- EFT approach is “theory” friendly
- Need to understand how to simplify EFT
 - Models need to be both
 - Sufficiently general and
 - Practically feasible to fit

\[\mu = \kappa^2 \]
\[\kappa_v, \kappa_F \]
\[\kappa_g, \kappa_\gamma \]
\[\lambda_{WZ} \]
\[\lambda_{ud} \]
\[\lambda_{lq} \]
Generic coupling models

\[8(EWPD) + 3(aTGC) + 8(\text{Higgs}) \text{?} \]
59 EFT dim-6 operators
EFT challenges

• What about light BSM particles?

• EFT approach is “theory” friendly

• Need to understand how to simplify EFT

• Full EFT aware theory tool chain will be needed
 • MC generators for signal AND background
 (e.g. MG5_aMC@NLO)
 • (N)NLO calculations for signal and background
 (e.g. HAWK, HIGLU)
 • BRs
 (e.g. eHDECAY)
 • “Rotations” between different EFT basis choices
 • Predictions should recover the best known SM predictions
 (including all higher order QCD and EWK corrections) in the
 SM limit
Summary

- κ-framework did good job for Run 1 for the searches for deviations in Higgs couplings
 - do we want to (can we?) do something similar for differential distributions?

- Spin/CP benchmarks allowed to characterize the observed particle to be very likely Spin 0

- For Run 2, the EFT approach offers the possibility of
 - Precision BSM measurements
 - Consistent treatment of observables, also outside the Higgs sector, within one BSM theory framework
 - Especially combination with electroweak precision data and aTGC measurements
 → need coherent approach with LHC EW WG

- And don't forget: theory systematics are crucial!
Many thanks to the theory conveners and theory colleagues of the LM group! Their inputs made the ATLAS+CMS Higgs property measurements possible!