

Results from the Pilot Runs and Beam Tests of Diamond Pad & Pixel Detectors

Harris Kagan Ohio State University on behalf of the RD42 collaboration

Outline

- CMS Experience with a diamond pixel detector (PLT)
- PSI Test Beam: Pulse height vs rate study
	- pad detector results
	- pixel detector results
- Conclusions

RESMDD 2014, Firenze, Italy

Experience with the PLT during pilot run

For original details see talk by Dean Hidas at Pixel 2012 and RD42 LHCC Status Report 2014

October 8, 2014 **Pilot Runs and Beam Test of Diamond Pixel Detectors**

CMS PLT – Pilot Run Version

- Dedicated stand-alone **P**ixel **L**uminosity **T**elescope
	- Aim to provide high precision bunch-by-bunch luminosity measurement
	- Using "FastOr" readout
- Array of eight 3-plane telescopes in CMS
- Single-crystal diamond pixel sensors by DDL/E6
	- Area 4.7 mm x 4.7 mm, thickness 500 µm
- Pixel readout for tracking and minimization of systematics
	- 100 µm x 150 µm pixel pitch
- 2012 Pilot run in "Castor" region
	- 14.5 m from IP

• Total exposure: $20 fb^{-1}$

Diamond PLT Pulse Height Dependence on Rate

- During pilot run, a shift in pulse height was observed
	- High pulse height before collisions (beam halo)
	- Pulse height drops after beam brought into collision
	- Not seen with silicon planes in CASTOR region

Diamond PLT Pulse Height Dependence on Rate

- During pilot run, a shift in pulse height was observed
	- High pulse height before collisions (beam halo)
	- Pulse height drops after beam brought into collision
	- Not seen with silicon planes in CASTOR region
	- Raising HV recovers some of the pulse height => electrostatics

FLUKA Study for CASTOR region

FLUKA Simulation suggests the scale of the doses of about 5x 10¹³/cm² each for charged hadrons and neutrons

Edn/dE $\text{Icm}^2\text{s}^{-1}$

Summary of RD42 Results

For original details see the RD42 LHCC Status Report 2014

RD42 Collaboration (2014)

The 2014 RD42 Collaboration

M. Artuso²⁴, F. Bachmair²⁸, L. Bāni²⁸, M. Bartosik³, V. Bellini², V. Belyaev¹⁵, B. Bentele²³, E. Berdermann⁸, P. Bergonzo¹⁴, A. Bes³², J-M. Brom¹⁰, M. Bruzzi⁵, M. Cerv³, C. Chau¹⁹, G. Chiodini³¹, D. Chren²², V. Cindro¹², G. Claus¹⁰, J. Collot³², S. Costa², J. Cumalat²³, A. Dabrowski³, R. D'Alessandro⁶, W. de Boer¹³, B. Dehning³, D. Dobos³, W. Dulinski¹⁰, V. Eremin⁹, R. Eusebi²⁹, G. Forcolin²⁶, J. Forneris¹⁸, H. Frais-Kölbl⁴, K.K. Gan¹⁶, M. Gastal³, M. Goffe¹⁰, J. Goldstein²⁰, A. Golubev¹¹, L. Gonella¹, A. Gorišek¹², L. Graber²⁷, E. Grigoriev¹¹, J. Grosse-Knetter²⁷, M. Guthoff³, I. Haughton²⁶, D. Hidas¹⁷, D. Hits²⁸, M. Hoeferkamp²⁵ T. Hofmann³, J. Hosslet¹⁰, J-Y. Hostachy³², F. Hügging¹, H. Jansen³, J. Janssen¹, H. Kagan^{16, \diamond}, K. Kanxheri³³, G. Kasieczka²⁸, R. Kass¹⁶, F. Kassel¹³, M. Kis⁸, G. Kramberger¹², S. Kuleshov¹¹, A. Lacoste³², S. Lagomarsino⁶, A. Lo Giudice¹⁸, C. Maazouzi¹⁰, I. Mandic¹², C. Manfredotti¹⁸, C. Mathieu¹⁰, N. McFadden²⁵, G. McGoldrick¹⁹, M. Menichelli³³, M. Mikuž¹², A. Morozzi³³, J. Moss¹⁶, R. Mountain²⁴, S. Murphy²⁶, G. Oakham²¹, A. Oh²⁶, P. Olivero¹⁸, G. Parrini⁶, D. Passeri³³, M. Pauluzzi³³, H. Pernegger³, R. Perrino³¹, F. Picollo¹⁸, M. Pomorski¹⁴, R. Potenza², A. Quadt²⁷, A. Re¹⁸, G. Riley³⁰, S. Roe³, M. Sapinski³, M. Scaringella⁵, S. Schnetzer¹⁷, T. Schreiner⁴, S. Sciortino⁶, A. Scorzoni³³, S. Seidel²⁵, L. Servoli³³, A. Sfyrla³, G. Shimchuk¹¹ S. Smith¹⁶, B. Sopko²², V. Sopko²², S. Spagnolo³¹, S. Spanier³⁰, K. Stenson²³, R. Stone¹⁷, C. Sutera², A. Taylor²⁵, M. Traeger⁸, D. Tromson¹⁴, W. Trischuk^{19, \diamond}, C. Tuve², L. Uplegger⁷, J. Velthuis²⁰, N. Venturi¹⁹, E. Vittone¹⁸, S. Wagner²³, R. Wallny²⁸, J.C. Wang²⁴, P. Weilhammer³, J. Weingarten²⁷, C. Weiss³, T. Wengler³, N. Wermes¹, M. Yamouni³², M. Zavrtanik¹² **128 Participants**

¹ Universität Bonn, Bonn, Germany ² INFN/University of Catania, Catania, Italy ³ CERN, Geneva, Switzerland ⁴ FWT, Wiener Neustadt, Austria ⁵ INFN/University of Florence, Florence, Italy ⁶ Department of Energetics/INFN, Florence, Italy ⁷ FNAL, Batavia, USA ⁸ GSI, Darmstadt, Germany ⁹ loffe Institute, St. Petersburg, Russia ¹⁰ IPHC, Strasbourg, France ¹¹ ITEP, Moscow, Russia ¹² Jožef Stefan Institute, Ljubljana, Slovenia ¹³ Universität Karlsruhe, Karlsruhe, Germany ¹⁴ CEA-LIST Technologies Avancees, Saclay, France ¹⁵ MEPHI Institute, Moscow, Russia ¹⁶ The Ohio State University, Columbus, OH, USA ¹⁷ Rutgers University, Piscataway, NJ, USA ¹⁸ University of Torino, Torino, Italy ¹⁹ University of Toronto, Toronto, ON, Canada ²⁰ University of Bristol, Bristol, UK ²¹ Carleton University, Ottawa, Canada ²² Czech Technical Univ., Prague, Czech Republic ²³ University of Colorado, Boulder, CO, USA ²⁴ Syracuse University, Syracuse, NY, USA ²⁵ University of New Mexico, Albuquerque, NM, USA ²⁶ University of Manchester, Manchester, UK ²⁷ Universität Goettingen, Goettingen, Germany ²⁸ ETH Zürich, Zürich, Switzerland ²⁹ Texas A&M, College Park Station, TX, USA ³⁰ University of Tennessee, Knoxville, TN, USA ³¹ INFN-Lecce, Lecce, Italy ³² LPSC-Grenoble, Grenoble, France ³³ INFN-Perugia, Perugia, Italy

33 Institutes

Summary of RD42 test beam results

- Damage factor determined from change in pule height vs irradiation fluence – multiple test beam campaigns in CERN SPS
- k_λ (24 GeV p) ~ $0.62 \pm 0.07 \times 10^{-18}$ μ m⁻¹cm⁻²
	- $-$ ~10% uncertainty on relative k_{λ}

Comparison to FLUKA DPA Study

- DPA based on Displacement Energy for Diamond of 43.3 eV - M. Guthoff et. al. [arXiv:1308.5419](http://arxiv.org/abs/1308.5419)
- Reasonable agreement between RD42 Data and Simulation
	- According to this scaling we expect only 10% signal loss in the PLT from dose received in CASTOR region

RD42 Test Beams at PSI

PSI Test Beam Campaign

- Several successful test beam campaigns (Dec 2013, May 2014, July 2014)
	- Some Results up to May test beam shown here
- Pad detectors:
	- study sensors w/o threshold effect
	- Quick detector fabrication and turn around
- Pixel detectors:
	- Study effects of pixel threshold
	- Study effects of pixel charge sharing
- Samples:
	- E6 scCVD non-irradiated (Reference) [pad, pixel]
	- E6 scCVD neutron irradiated (5e13), [pad, pixel]
	- E6 scCVD proton irradiated (5e13), [pad]
	- E6 scCVD castor-irradiated (PLT pilot run) [pad, pixel]
	- pCVD non-irradiated [pad, pixel]
	- pCVD neutron irradiated (pad 5e15, pixel 1e14)
	- Tests
		- Pulse height versus rate scan [pad 1-3 MHz/cm², pixel up to 10 MHz/cm²]
		- Long term pulse height stability at high rate [pad, pixel]
		- Positive and negative bias polarities [pad]

DUT devices

Pad detector box **Pixel detector plane**

October 8, 2014 **Pilot Runs and Beam Test of Diamond Pixel Detectors**

PSI Test beam setup

- piM1 beam line at PSI Proton Accelerator
	- $-$ 250 MeV/c "mostly" $π+$
- Rate determined on the coincidence of front and back silicon planes
- Particle rate easily variable with beam line collimators – from $O(1 \text{ kHz/cm}^2)$ to $O(10 \text{ MHz/cm}^2)$
- Test setup reconfigurable into either a "pad" setup or "pixel" setup

Pixel test setup with masked pixel trigger

- 6 Tracking planes
	- 2 Trigger planes
	- 4 planes under test

PSI Test beam setup

- piM1 beam line at PSI Proton Accelerator
	- $-$ 250 MeV/c "mostly" $π+$
- Rate determined on the coincidence of front and back silicon planes
- Particle rate easily variable with beam line collimators – from $O(1 \text{ kHz/cm}^2)$ to $O(10 \text{ MHz/cm}^2)$
- Test setup reconfigurable into either a "pad" setup or "pixel"

Pad test setup

setup

Pad test setup with masked pixel trigger

- 2 Tracking/Trigger planes
	- 2 Trigger planes
	- 1 plane under test

Masked pixel trigger

Map Ord Entries Mean x Mean y RMS x RMS_y

hitmap 0

- Using diamond as a signal to pixel detector to find a "shadow" of the diamond
	- Mask all pixels outside the diamond shadow
- Use "FastOr" of the masked pixel detector as a trigger for the diamond
	- **Large improvement in signal to background ratio**
- In later runs both front and back trigger planes were masked
	- Pedestal events practically eliminated

Pad Detector Analysis Results

Pad Analysis Setup

- Pulse height amplified with Ortek 142A pre-amp and Ortek 450 shaping amplifier
	- 300 ns peaking time
- Digitization performed with DRS4 evaluation board
	- 1024 sampling points
	- slowest sampling speed 0.7 GSPS
- Integration region is centered on signal
	- Constant delay with respect to the trigger for all runs

integration region integration region

CASTOR single crystal diamond

- •scCVD diamond produced by Element 6
- FLUKA estimation of dose $5x10^{13}$ /cm² of each charged hadrons and neutrons
- Run at 500V w/ one plane masked pixel trigger
- Noticeable rate dependence

n-irradiated single crystal diamond

- scCVD diamond produced by Element 6
- Irradiation dose 5x10¹³ n/cm² at JSI, Ljubljana
- Runs at 500 V with masked pixel trigger
- Noticeable rate dependence Noticeable rate dependence single crystal for reference 0.04 Ref: 4.2 kHz/cm² 0.035 neutron irradiated 2.8 kHz/cm2 single crystal 25.2 kHz/cm2 0.03 336 kHz/cm2 0.025 0.02 0.015 0.01 0.005 $\frac{0}{20}$ 40 Ω 20 60 80 100 **Pulse Height** October 8, 2014 **Pilot Runs and Beam Test of Diamond Pixel Detectors**

n-irradiated Poly-crystalline diamond

- Irradiation dose $5x10^{13}$ n/cm² at JSI, Ljubljana
- Runs are at 500 V with masked pixel trigger
	- Use non-irradiated single crystal for calibration
		- Mean for poly: 18.9 (CCD \sim 200 um)
		- Mean for sc: 47.2 (CCD ~500 um)

• **No noticeable rate dependence**

October 8, 2014 Pilot Runs and Beam Test of Diamond Pixel Detectors

s129 Normal +500 V

 $10⁶$

Polarity dependence: Non-irradiated single crystal (Ref.)

- Non-irradiated.
- Test polarity dependence:
	- $-$ Bias HV +/- 500 V @ 3, 30, 300, 3000 kHz
- Baseline is found to be rate dependent:
	- Pedestals are fitted with Gaussian at the peak +/-RMS/2
	- the mean of the pedestal shifted to 0 (+/- bin width)
	- Both pedestal and pulse height distribution for the same rate are shifted by the same amount
- Pulse height distribution are fitted with a convolution of Gaussian and Landau.
	- The MP of the Landau distribution is plotted
	- Error is the error from the fit
	- Take spread as systematics uncertainty
	- No Polarity dependence observed

s129, +500 V

October 8, 2014 **Pilot Runs and Beam Test of Diamond Pixel Detectors**

rate. Hz

Polarity dependence: Non-irradiated poly

- Non-irradiated.
- Test polarity dependence:
	- $-$ Bias HV +/- 500 V @ 3, 30, 300, 3000 kHz
- Baseline is found to be rate dependent:
	- Pedestals are fitted with Gaussian at the peak +/-RMS/2
	- the mean of the pedestal shifted to 0 (+/- bin width)
	- Both pedestal and pulse height distribution for the same rate are shifted by the same amount
- Pulse height distribution are fitted with a convolution of Gaussian and Landau.
	- The MP of the Landau distribution is plotted
	- Error is the error from the fit
- Stronger rise in pulse height: pumping effect

2A87-H, +500 V

Polarity dependence: Neutron irradiated poly

- Irradiation dose 5x10¹³ n/cm²
- Test polarity dependence:
	- $-$ Bias HV +/- 500 V @ 3, 30, 300, 3000 kHz
- Baseline is found to be rate dependent:
	- Pedestals are fitted with Gaussian at the peak +/-RMS/2
	- the mean of the pedestal shifted to 0 (+/- bin width)
	- Both pedestal and pulse height distribution for the same rate are shifted by the same amount
- Pulse height distribution are fitted with a convolution of Gaussian and Landau.
	- The MP of the Landau distribution is plotted
	- Error is the error from the fit

• Slight rise in pulse height - pumping effect ?

Preliminary summary rate dependence

- •Plots for Most Probable PH vs Rate
- •CASTOR single crystal CVD diamonds (E6) show rate dependence
- •Irradiated single crystal CVD diamonds (E6) show rate dependence
- Irradiated poly CVD diamond does NOT show rate dependence

Pixel Detector Analysis Results

Pixel Analysis Setup

- Two 6-plane telescope arrangements were tested
	- Si **:** non-irradiated poly-CVD 1 **:** n-irradiated poly-CVD 1e14 **:** single-crystal-CVD castor irradiated ~1e14 **:** single-crystal-CVD non-irradiated **:** Si
	- Si **:** non-irradiated poly-CVD 2 **:** n-irradiated poly-CVD 1e14 **:** single-crystal-CVD n-irradiated ~5e13 **:** Si **:** Si
- Readout with PSI46 analog test board
	- zero suppressed readout
	- individual pixel thresholds 2500 +/- 500 electrons
- Trigger provided by forming a coincidence of fast-OR of front and back masked telescope planes
- Each plane individually biased

Reference: non-irradiated single-crystal

Clusters [%] 10

đ

Fraction

8

-2 kHz
-130 kHz
-21000 kHz

- Total pulse height and efficiency are stable vs rate
- Cluster size is changing

– surface effects ?

October 8, 2014 **Pilot Runs and Beam Test of Diamond Pixel Detectors**

Castor-irradiated single-crystal

- Irradiation dose: FLUKA estimate 5x10¹³ n/cm² + $4x10^{13}$ charged hadrons/cm²
- Total pulse height and efficiency are decreasing significantly with rate increase.
- Cluster size is changing
	- low pulse height pixels disappear under threshold, effectively reducing clusters size

October 8, 2014 Pilot Runs and Beam Test of Diamond Pixel Detectors

Non-irradiated poly

- Cluster size is also slightly increasing vs rate
	- Pumping or systematic bias

neutron-irradiated poly

Fraction of Clusters [%]

10

 0°

⁰

20000

000 kHz

40000

Charge [electrons]

- Irradiation dose 1x10¹⁴ n/cm².
- Total pulse height and efficiency decrease only slightly with rate
	- Only tail of Landau is visible due to high threshold
- Cluster size is stable with rate

Defects in single crystal diamonds

န္တ
ၕ_{႗5}

70

65

60

55

50

45

15

20

• Cross polarizer view of the single crystal CVD diamond showing point defects and high stress regions

> *For illustration – not the same diamond.*

• Average pulse height in PLT diamond during pilot run indicating holes

25

30

35

Column

32

50000

5008

40000

30000

20000

10000

Conclusions

- A rate dependence of the pulse height was observed in the PLT using scCVD diamond sensors operating in the CASTOR region of CMS during a pilot run
	- Disappearing signal inconsistent with radiation hardness expectations by RD42
	- Partial signal recovery with increased HV
- RD42 performed dedicated test beam campaigns to study the effect
	- Pad and pixel detectors were studied with diamond samples irradiated up to $1x10^{14}$ n/cm² to disentangle geometry effects
- Rate dependence could be replicated with scCVD sensors with neutron irradiation of roughly comparable dose
	- Effect not visible (or very small) in poly-crystalline diamond up to particle rates of 3 MHz/cm2
	- No dependence on polarity of HV observed (electron or hole carriers)

Outlook

- Study promising new single crystal diamonds from alternate vendor IIa
	- check dependence on manufacturing procedures
- Study latest poly CVD diamonds from II-VI
	- $-$ higher collection distance (\sim 300 um)
	- Use readout chip with lower threshold (digital ROC for CMS phase 1 upgrade)
- Study time evolution of pulse height
- Study irradiated pad & pixel diamond detectors to higher doses

Backup

PSI Test Beam Campaign

