10th International Conference on Radiation Effects on Semiconductor Materials, Detectors and Devices Contribution ID: 10 Type: not specified ## Leakage Current Measurements of highly irradiated Silicon Strip Sensors Wednesday 8 October 2014 16:40 (20 minutes) The leakage current of irradiated silicon sensors depends, among others, on sensor temperature and irradiation fluence. The temperature dependence is parameterized with the activation energy E_g and the fluence dependence with the current related damage rate α . The literature values for E_g and α are obtained from previous measurements, but α is only measured directly to a dose up to 1e15 1MeV neq/cm² (neq/cm²). Miniature micro-strip sensors ($\sim 1 \times 1 \text{cm}^2$) were irradiated with protons to fluences from 1e12 to 1e15 neq/cm² and with neutrons from 5e15 to 2e16 neq/cm² to investigate the reverse current at higher fluence. Precise temperature and current measurements of the sensors from Hamamatsu Photonics K.K. (300 μ m thick) and Micron Semiconductor Ltd. (143 μ m and 108 μ m thick) allow the determination of E $_g$ and α . The sensors were measured shortly after irradiation and after room temperature annealing. For the devices irradiated to higher fluences the obtained values differ from the literature value of E $_g$ and the expected value from the linear extrapolation of α . Primary author: WONSAK, Sven (University of Liverpool (GB)) **Co-authors:** CASSE, Gianluigi (University of Liverpool (GB)); WORMALD, Michael (University of Liverpool (GB)); DERVAN, Paul (University of Liverpool (GB)); Dr AFFOLDER, Tony (University of Liverpool (GB)) **Presenter:** WONSAK, Sven (University of Liverpool (GB)) **Session Classification:** Irradiated Silicon Detectors