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‘Cosmology and the LHC"?

e Big topic! Lots of possible connections

e Since we don’'t know anything from either colliders or
cosmology/astrophysics about new physics near TeV
scale, hard to say which ideas are most important

* [wo possible connections | think are important:

 Dark matter (can we make it, or related particles, at the
LHC)?

* Electroweak phase transition (what can we learn about it
from colliders?)



The Electroweak Phase
Transition



Dynamics of Electroweak
Breaking

Of course, this is the major LHC discovery so far: it looks
ike a weakly coupled, SM-like Higgs boson!
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Tempting to extrapolate back and say we know something
about the universe at temperatures at or above ~100 GeV.
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prriy Guesswork!
No data between
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Caveat: What the LHC Can't
Tell Us About Cosmology

One sometimes encounters the claim (especially in popular
media) that the LHC tells us about what the universe was like
when the temperature was ~ 100 GeV.

In detall, this isn't true. For instance: was most of the energy
in the universe in the form of massive particles or of
radiation when the SM plasma had a temperature ~ 100
GeV? Not only do we not know, the LHC can't tell us.

Particle with gravitational strength interactions and mass ~
100 TeV decays just before BBN: undetectable at colliders,
could have dominated the universe at weak scale.



HIggs Measurements and
Cosmology

Learning about the Higgs couplings, we might extrapolate:

RG running: does the potential have other minima at large
field values? Is there a mystery of why we're in our minimum?

Finite temperature: how does the potential change in a hot

environment? What was the phase transition from unbroken to
broken symmetry like?

We need other data to tell us what the early universe was like
(e.g. matter or radiation-dominated, what scale inflation
happened at). But LHC (+ILC, FCC-ee...?) provides key data.



H|ggs Potential Instabillities

Running SM couplings: the
big top Yukawa generates a
rapid decrease in A(y).

| A | V(h) ~ A(u=h) he.
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HIggs Potential Instabilities

Scale of new physics: 0 = +

- Rapid instability

Metastability

Possible stability
(Planck-sensitive)

1h6

2
NP

| New result from Anders
| Andreassen, Will Frost, and
| Matt Schwartz (1408.tonight):;
| careful treatment of gauge
| dependence in effective
| potential calculation. Rules
| out absolute stability
| unless new physics below
| ~10"2 GeV. (Exp. sensitive
| to top mass!)



HIgQgs Potential Instabilities

During inflation: fields lighter than ~ Hubble have quantum
fluctuations of order Hubble. It Hubble >> scale of Higgs
instability, Higgs can fluctuate over the hill! But: order-one
Planck-suppressed operators remove the problem.
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HIgQgs Potential Instabilities:
| esson”

f we extrapolate the Standard Model to very high scales, it
ooks like it's consistent cosmologically: we can safely live

INn our vacuum for a long time.

But it's surprisingly close to the absolute stability boundary.
s this telling us anything deep? | haven't yet seen any
suggestions of what it could mean that appear compelling
to me, but it's something to keep an eye on.



Electroweak Phase
Transition

At finite temperature, the Higgs potential changes. Particles
INn the environment whose masses depend on the Higgs VEV
will influence the Higgs field.

Qualitatively: becomes thermodynamically preterred to put
the VEV at zero, because exciting all the massive particles at
nonzero VEV Is expensive.

Calculable (Dolan, Jackiw; Weinberg; 1974).



Electroweak Phase
Transition

One major guestion: was the transition first-order, or not?

V T>T, V T>T,
A A Figure from Cline,
hep-ph/0609145

T=T.
T=T,
T<Tc T<Tc
- H - H
first order second order

For strongly first-order transition, need a cubic term ~TH3 to
dominate over terms ~T2H2. Turns out in SM this only
happens for very light Higgs bosons.



Electroweak Baryogenesis

Physics happens at the walls of bubbles ot EWK-breaking
vacuum percolating within the EWK-preserving surroundings:

magnify:
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Figures from review by David Morrissey and Michael Ramsey-Musolf, arxiv:
1206.2924. Proposed by Kuzmin, Rubakov, Shaposhnikov in 1985. See e.g. work
by Cohen, Kaplan, Nelson 1990/1; MSSM: recent reviews Carena, Nardini,
Quiros, Wagner 0809.3760; 1207.6330
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Electroweak Phase

Transition

A strongly first-order phase transition requires new physics
that substantially alters the finite-temperature Higgs
potential. Either Higgs couples differently to SM particles or
couples to beyond-SM particles. Either way, precision Higgs

tests should see effects!

(0 X BR)/(0 X BR)sm
MSSM-like, m;, = 125 GeV
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Effect of color triplet on Higgs potential.
Thick black line: strongly first-order
transition.

Red contours: enhanced gluon fusion to
diphoton rate.
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Electroweak Phase
Transition

Given that naturalness is inherently fuzzy (do we worry with
factor of 100 tuning”? 10007 10,0007), it's interesting to think
about questions we can get a sharp answer to with future

colliders.

‘Is the elect
a question t

'oweak phase transition first-order?” seems like
nat the LHC can almost settle (looks like “no” so

far), and co

ncelvable future colliders probably can

definitively settle.



Dark Matter and the LHC



What is Dark Matter”?
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Why Dark Matter and LHC?

It's entirely possible that DM interacts with us only
gravitationally, or otherwise through very weak forces (e.g.
axions). Why should we think it might have anything to do
with the LHC?

Three (not necessarily mutually consistent) semi-empirical
motivations for DM being in reach colliders:

1. “WIMP miracle”

2. Coincidence of DM and baryon abundances

3. Self-interacting DM hints
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MSSM Dark Matter

Neutralinos: superpartners of photon, Z, and Higgs.

Wino and higgsino: in SU(2)

0 + . o
* v multiplets; can annihilate a lot.
x Thermal relic abundance is
underpopulated unless they're
7 W= heavy (about | TeV for higgsinos or

3 TeV for winos), e.g.

3
4 CIN

<av(xx — W+W_)> ~ 3 x 1077 — for m, ~ 140 GeV



MSSM Dark I\/Iatter

BINo; overpopulates, unless slepton

s very light or degenerate within ~
5% for coannihilation. |

Viable MS5M dark matter: 7° T

- heavy (bottom of spectrum at | or 3 TeV)

- coannihilation to boost relic abundance of a mostly-
bino state

- delicate mixing of wino/higgsino and bino to get
thermal abundance (“‘well-tempered™)

- non-thermal relic abundance
Begins to look like less of a miracle after all.




DM Complementarity

LUX bounds are ruling out WIMP-nucleon cross sections
of around 10" cm?. What does this mean!?
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Direct Detection

non—thermal b/h limits
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Cheung/Hall/Pinner/Ruderman 1211.4873: much of mixed

bino-higgsino thermal relic space is ruled out, but blind spots
for direct detection exist.



DM Complementarity
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But colliders are ideal in this
regime: the Higgs would
decay to these light DM
particles!
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Direct Detection Rates

I here can be weakly-interacting particles with nerther Z-

nor Higgs-mediated interactions, but with W loops.
E.g. supersymmetric “winos

X X . .
(a) (b) (beware sign mistakes

. leading to false optimism
— 47 2 8 P
Hisano et al. 10044090 o < 107%" em® i carfier refs

Down in the neutrino background. Even “WIMPs”

may not show up at XENON/LUX!
Colliders, indirect detection needed: complementarity



WIMPS at Colliders

L ots of recent excitement about minimal

signatures
> X
\é&/ Mono-jet (generally: mono-X)
N\,
or
e PRy

A

Real models generally have non-minimal signatures.



For instance, in MSSM we either had coannihilation
or an SU(2) multiplet. Either way, more particles
around. Dark matter + “Friends of dark matter”

SU(2)L multiplets by definition involve multiple
states, some charged

* —Wi ~ & _ :
W g M, e }om~ 2m,, (tree-level dim 7)

Wino charged -> neutral: disappearing track

Higgsino charged -> neutral, neutral -> neutral:
soft leptons or jets



SU(2) multiplet (WIMP) production channels
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q

Almost never DM—DM. Always DM—"DM-
friend” or “DM friend”—“DM friend”

Not mono-jet, but “mono-jet + Y”’: Y =
disappearing track or soft lepton



Minimal signatures for non-minimal DM?

8

4
W Mono-jet (generally: mono-X)

7\,

or

VBF

\\f//x
P

It DM is not an SU(2). multiplet, these interactions are
usually high-dim. operators. We integrated something

out. Often can look for that thing: additional
nonminimal signatures.



ATLAS 1310.3675: wino search. Mono-jet + disappearing
track. Rules out wino up to 270 GeV.
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Indirect Detection of Wino
Dark Matter: Gamma Rays
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What o Do With The
Bounds?

A lot of well-motivated swaths of SUSY dark matter parameter
space are already ruled out by direct or indirect detection.

SUSY is motivated by naturalness (now swallowing mild
tuning) and gauge coupling unitication. Models that look
good except for DM can be patched up: it could be that the
would-be-problematic DM decays, either through R-parity
violation or through an R-parity conserving hidden valley.

Lifetimes that are long on collider scales can be short
relative to BBN, so keep looking for both prompt decays,
displaced decays, and no decay at all.



When it comes to empirically-motivated models that
put dark matter masses in a range that might be
probed at colliders, WIMPs aren't the only game in
town.

'll brietly mention two other possibilities.



Asymmetric Dark Matter

n recent years many model-builders have considered
that dark matter may also have an asymmetry-- more
dark matter than anti-dark matter

An, =n, —ng # 0

Some physics In the early universe establishes

Ny, My, B, N B
In general, asymmetries An,, Ang convert into each other.

Often assumed symmetric component annihilates
completely; today have X but no X.



Asymmetric Dark Matter

The idea has a long history, with an essentially modern version proposed by David B
Kaplan in 1992 and recent activity kicked off by David E Kaplan, Markus Luty, and Kathryn
Zurek in 09014117,

Models of this type often have the feature:

- DM asymmetry and baryon asymmetry are equal up

to a calculable order-one factor
- Then "DM 7~ Nlbaryon and PDM ~ 5,0baryon

- As a result, we expect dark matter masses mpm ~ Mbaryon

50, frequently (not always!) predict dark matter masses In
the ~| to 10 GeV range.



Selt-Interacting Dark Matter

There are possible hints of dark matter self-interactions, e.g.
from presence of cores in DM distribution in dwart galaxies.

NFW profile (Navarro, Frenk,
White 1993) with cusp:
robust outcome of N-body
simulations of dark matter
only.

log(p(r)/p(r_3))

Data in dwarf satellites
favors a core. SIDM, or
baryonic effects?




Selt-Interacting Dark Matter

The cross sections required, it SIDM is the right explanation
for the hints in data, are large by particle physics
standards:

o ~ 0.1 barn (mpm/GeV).

Model-dependent translation into mass and couplings, but
e.qg. for glueball (strong, point-like interaction):

o ~ 4n/mpn?, so mpu ~ 100 MeV. (Other cases may have,
e.qg., Rutherford 1/v4 enhancement, so larger masses.)

But: generally not too far above weak scale, if SIDM is to
explain data. (Caveat: coupling to SM not guaranteed.)



Outlook

There are about as many possible LHC/cosmology
connections as there are models of new physics.

It's hard to forecast where we're going, but there is a lot of
potential for excitement given the very ditferent
complementary probes we can bring to bear if new physics
exists near the weak scale.

Let’'s keep digging for signals!



