

Visible and Invisible Higgs Decays at 350 GeV

Mark Thomson University of Cambridge

- **★** To date, most studies only use $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$
- **★** Statistical precision limited by leptonic BRs of 3.5 %
- **★** Here: extend to $Z \rightarrow qq \sim 70 \%$ of Z decays
- **★** Strategy identify $Z \rightarrow qq$ decays and look at recoil mass
- **★** Can never be truly model independent:
 - unlike for $Z \rightarrow \mu \mu$ can't cleanly separate H and Z decays

★ Status as of May 2015 (AWLC14)

• ~M.I. but some weaknesses...

Decay mode	$oldsymbol{arepsilon}_{\mathscr{L}>0.70}^{\mathrm{vis}}$	$arepsilon_{ m BDT>0.08}^{ m invis}$	$\boldsymbol{\varepsilon}^{\mathrm{vis}} + \boldsymbol{\varepsilon}^{\mathrm{invis}}$		
$H \rightarrow invis.$	<0.1 %	20.7 %	20.7 %		
$H \rightarrow q\overline{q}/gg$	20.6 %	<0.1 %	20.6 %		
$H \rightarrow WW^*$	19.5 %	<0.1 %	19.8 %		
$H \rightarrow ZZ^*$	18.1 %	0.9 %	19.0%		Very similar
$H \to \tau^+ \tau^-$	21.4 %	0.1 %	21.5 %	Γ	efficiencies
$H \rightarrow \gamma \gamma$	22.1 %	<0.1 %	22.1 %		
$H \rightarrow Z\gamma$	17.6%	<0.1 %	17.1 %		
${ m H} ightarrow \mu^+ \mu^-$	20.6 %	<0.1 %	20.6 %		
$H \rightarrow WW^* \rightarrow q\overline{q}q\overline{q}$	19.3 %	<0.1 %	19.3 %	ר. ר	
$H \rightarrow WW^* \rightarrow q\overline{q} l\nu$	19.6%	<0.1 %	19.6 %		Look at wide
$H \rightarrow WW^* \rightarrow q\overline{q}\tau\nu$	19.9%	<0.1 %	19.9 %		range of WW
$H \to WW^* \to l\nu l\nu$	22.0 %	0.3 %	22.3 %	Γ	
$H {\rightarrow} WW^* {\rightarrow} l\nu\tau\nu$	16.7 %	0.3 %	17.0%		topologies
$H \to WW^* \to \tau \nu \tau \nu$	12.2 %	1.3 %	13.6%		

- Reduce model dependence
- Increase robustness
- Simplify analysis

★ Major re-structuring

- Use non-optimal invisible analysis
- Likelihood fit based signal extraction
- Proper assessment of M.I.

- Assume each event is ZZ → qqqq
- Therefore: force into 4 jets
- Choose jet pairing (12)(34), (13)(24) or (14)(23) with single jet-pair mass closest to Z mass

***** Cut on reconstructed di-jet masses

2) Jet Reconstruction

- ★ Identify a two-jet system consistent with Z→ qq
 ★ Higgs can either decay invisibly or visibly
- **\star** For Z \rightarrow qq decays \Rightarrow
 - two jets or two jets + at least two other particles

★ ZH signatures: Z + nothing or Z + other visible particles

Divide into candidate invisible and visible Higgs decays

2) Jet Reconstruction

- ★ Identify a two-jet system consistent with Z→ qq
 ★ Higgs can either decay invisibly or visibly
- **\star** For Z \rightarrow qq decays \Rightarrow
 - two jets or two jets + at least two other particles

- ★ Force events into:

 2-jets: invisible decays
 3-, 4-, 5- and 6- "jet" topologies (R=1.5)

 For each of these six topologies:

 find two jots (> 3 tracks) most consistent with 7
 - find two jets (> 3 tracks) most consistent with Z
 determine mass of system receiling against this '
 - determine mass of system recoiling against this "Z"

★ Divide sample into: two "jets" or > two "jets" ■ cut on y₂₃: the k_T value at which the 2 jets → 3 jets

IF $-\log_{10}(y_{23}) > 2$ & $-\log_{10}(y_{34}) > 3 \implies$ Cand. invisible decay

Visible Higgs Decays

- IF $-\log_{10}(y_{23}) < 2$ OR $-\log_{10}(y_{34}) < 3$ Cand. visible decay
 - **★** Candidate two jets from Z + Visible Higgs decay
 - H→qq : 4 quarks = 4 "jets"
 - H→γγ : 2 quarks + 2 photons = 4 "jets"
 - H→ττ : 2 quarks + 2 taus = 4 "jets"
 - H→WW*→IvIv : 2 quarks + 2 leptons = 4 "jets"
 - H→WW*→qqlv : 4 quarks + 1 lepton = 5 "jets"
 - H→WW*→qqqqq : 6 "jets"
 - H→ZZ*→vvvv : 2 "jets" (invisible analysis)
 - H→ZZ*→vvqq : 2 quarks = 4 "jets"
 - H→ZZ*→qqII : 4 quarks + 2 leptons = 6 "jets"
 - H→ZZ*→qqqq: 6 quarks = 6 "jets"

4, 5 or 6 jets ?

Force event into 4-, 5-, 6- jet topologies
 For each, look at all jet combinations, e.g. for 4-jet topology

- * "Z" candidate = is the di-jet combination closest to Z mass from all three jet combinations, i.e. one per event
- ★ Repeat for 5- and 6-jet topologies...

Visible Higgs Decays

4, 5, or 6 jets?

★ Find that it rarely helps going from 5 → 6: even if a 6-jet final state, provided reconstruct two "hard" jets from Z decay OK

So choose between 4 or 5 jet topology:

- ★ Default is to treat as 4-jets
- **★** Reconstruct as 5-jets only if:
 - -log₁₀(y₄₅) < 3.5 AND</p>
 - 5-jet reconstruction gives "better" Z mass and "better" Higgs recoil mass "better" = closer to true masses

★ To this point have:
Applied event type preselection
 Based on reconstructed di-jet masses etc
Separated remaining sample: visible/invisible
 Based on jetiness: y₂₃ and y₃₄
Decided on # of "jets" for use in subsequent analysis
 Invisible: 2 jets
 Visible: either 4 or 5 jets
* <u>Now:</u>
■ Use ONLY properties of Z → qq decay
Never again look at recoiling "Higgs" system

★ Using "best" jet hypothesis and best Z→qq candidate:

$$70 \,\mathrm{GeV} < m_{\mathrm{q}\overline{\mathrm{q}}} < 110 \,\mathrm{GeV}$$

 $80 \,\mathrm{GeV} < m_{\mathrm{recoil}} < 200 \,\mathrm{GeV}$

$$|\cos \theta_{\rm Z}| < 0.9$$
 (vis.)
 $|\cos \theta_{\rm Z}| < 0.7$ (invis.)

Two likelihood based selections
Visible hypothesis

Invisible hypothesis

Visible Decays

(> 2 jets)

Signal m_{ag} vs m_{rec}

Signal m_{ag} vs m_{rec}

That's about it !

★ Use relative likelihood selection

★ Input variables

- m_{qq} vs. m_{rec}
- $|\cos \theta_{\rm Z}|$
- $|\cos\theta_{q}^{*}|$

Calculate absolute likelihood for given event type

 $L = P(m_{qq}, m_{rec}) \times P(|\cos \theta_Z|) \times P(|\cos \theta_q^*|)$

NOTE: 2D mass distribution includes main correlations

Absolute likelihoods calculated for two main event types:
 Combined into relative likelihood

$$\mathcal{L}(\mathrm{HZ}) = \frac{L(\mathrm{HZ})}{L(\mathrm{HZ}) + L(\mathrm{back})}$$

Mark Thomson

m_{qq}

CERN, June 2014

 $\cos\theta_{q}$

0

 $\cos\theta_{\rm Z}$

Ζ

★ Use relative likelihood selection

★ Input variables

- m_{qq} vs. m_{rec}
- $|\cos \theta_{\rm Z}|$
- $|\cos\theta_{q}^{*}|$

Calculate absolute likelihood for given event type

 $L = P(m_{qq}, m_{rec}) \times P(|\cos \theta_Z|) \times P(|\cos \theta_q^*|)$

NOTE: 2D mass distribution includes main correlations

Absolute likelihoods calculated for two main event types:
 Combined into relative likelihood

$$\mathcal{L}(\mathrm{HZ}) = \frac{L(\mathrm{HZ})}{L(\mathrm{HZ}) + L(\mathrm{back})}$$

Mark Thomson

Model Independence

Combining visible + invisible analysis: wanted M.I. i.e. efficiency independent of Higgs decay mode

Decay mode	$arepsilon_{\mathscr{L}>0.65}^{\mathrm{vis}}$	$arepsilon_{\mathscr{L}>0.60}^{\mathrm{vis}}$	$\varepsilon^{\rm vis} + \varepsilon^{\rm invis}$	_
$H \rightarrow invis.$	<0.1%	22.0%	22.0%	
${ m H} ightarrow { m q} { m q} { m gg}$	22.2 %	<0.1 %	22.2 %	
$\mathrm{H} ightarrow \mathrm{W}\mathrm{W}^*$	21.6%	0.1~%	21.7 %	
$\mathrm{H} {\rightarrow} \mathrm{ZZ^*}$	20.2%	1.0%	21.2 %	Ì
$H \to \tau^+ \tau^-$	24.7 %	0.3 %	24.9 %	
${ m H} ightarrow \gamma \gamma$	25.8%	<0.1 %	25.8 %	
$H \to Z \gamma$	18.5 %	0.3 %	18.8 %	ل

Very similar efficiencies

Combining visible + invisible analysis: wanted M.I. i.e. efficiency independent of Higgs decay mode

Decay mode	$arepsilon_{\mathscr{L}>0.65}^{\mathrm{vis}}$	$arepsilon_{\mathscr{L}>0.60}^{\mathrm{vis}}$	$\varepsilon^{\mathrm{vis}} + \varepsilon^{\mathrm{invis}}$		
$H \rightarrow invis.$	<0.1%	22.0%	22.0 %		
$\mathrm{H} \rightarrow \mathrm{q} \overline{\mathrm{q}} / \mathrm{g} \mathrm{g}$	22.2%	<0.1 %	22.2%		
$\mathrm{H} ightarrow \mathrm{W} \mathrm{W}^*$	21.6%	0.1 %	21.7 %		N/ · · ·
$H \rightarrow ZZ^{*}$	20.2%	1.0~%	21.2 %		very similar
$\rm H {\rightarrow} \tau^{+}\tau^{-}$	24.7 %	0.3 %	24.9 %		efficiencies
${ m H} ightarrow \gamma \gamma$	25.8%	<0.1 %	25.8 %		
$\mathrm{H} \to \mathrm{Z} \gamma$	18.5 %	0.3 %	18.8%		
$H \rightarrow WW^* \rightarrow q\overline{q}q\overline{q}$	21.3 %	<0.1 %	21.3 %	٦	
$H \rightarrow WW^* \rightarrow q\overline{q} l\nu$	21.9%	<0.1 %	21.9 %		
${ m H} ightarrow { m W} { m W}^* ightarrow { m q} \overline{{ m q}} au { m v}$	22.1 %	<0.1 %	22.1 %	L	Look at wide
$H \rightarrow WW^* \rightarrow l\nu l\nu$	24.8%	0.1 %	25.0%		range of WW
$H \to WW^* \to l\nu\tau\nu$	20.5~%	0.8~%	22.1 %		topologios
$H \to WW^* \to \tau \nu \tau \nu$	16.4 %	2.5 %	18.9%		topologies

★ Fit likelihood distributions...

★ Visible decays

- float background normalisation
- float HZ normalisation (assume SM BRs)
- assume no non-SM invisible decays

★ Invisible decays

- float background normalisation
- fix SM HZ normalisation to visible decay fit result
 note only a very small contribution H→ZZ*→vvvv
- float non-SM invisible decays normalisation

★ Average fit results

$$\begin{tabular}{|c|c|c|} \hline & \Delta(g_{\rm HZZ}) \approx \pm 0.9 \end{tabular} \end{$$

nt"

★ New fit procedure gives better handle on MI

- investigated by reweighting HZ MC events to different Higgs Brs, e.g. + 5 % absolute
- e.g. BR(H \rightarrow bb) = 64.5 % \rightarrow 69.5 %
- Fit uses likelihood distributions based on SM BRs

Determine average bias in fitted total HZ cross section

Decay mode	$\Delta(\mathrm{BR})$	$\sigma^{\rm vis} + \sigma^{\rm vis}$ Bias
$H \rightarrow invis.$	+5 %	-0.02 %
$H \rightarrow q\overline{q}$	+5 %	+0.03 %
$\mathrm{H} \rightarrow \mathrm{W}\mathrm{W}^*$	+5 %	-0.19 %
$H \rightarrow ZZ^{*}$	+5 %	-0.33 %
$\rm H {\rightarrow} \tau^{+}\tau^{-}$	+5 %	+0.64 %
${ m H} ightarrow \gamma \gamma$	+5 %	+0.89 %
$H \rightarrow Z\gamma$	+5 %	-0.57 %
$H \to WW^* \to \tau \nu \tau \nu$	+5 %	-0.96 %

c.f. 1.8 % statistical error

★ For extreme changes

bias
$$\leq \frac{1}{2}$$
 stat. error

Summary

★ Results now final ★ Aim to write paper ★ 0.9 % statistical sensitivity to g_{HZZ}