

Measuring W Mass in 1.4TeV CLIC_ILD CLIC meeting

Boruo Xu (Univeristy of Cambridge)

11.6.2014

Boruo Xu (Univeristy of Cambridge) - Measuring W Mass in 1.4TeV CLIC_ILD

1 Introduction

- 2 Single W selection
- 3 Single Z selection
- 4 Comparison

5 Results

- m_Z is measured to 2MeV. We would like to measure m_W to few MeV level.
- Currently m_W is accurate to 15MeV level.
- At high energy (TeV), single W and Z production has high cross section.
- Any bias in m_W from single W production could be corrected by m_Z measurement from single Z production.

DST Samples, CLIC_ILD, \sqrt{s} =1.4TeV

Туре	ID	Event num	$\sigma/{ m fb}$	$m_h/{ m TeV}$
ee -> qqll	2645	226500	2726.7	12
ee -> qqII	3246	2104400	2725.8	12.6
ee -> qq $ u u$	2199	439000	788.0	12.6
ee -> qq $ u u$	3243	577200	787.7	12
ee -> qql $ u$	3249	2043200	4309.7	12

All graphs are normalised to $1.5ab^{-1}$

- Aim: Idenfity single W production in ee -> $qql\nu$ samples.
- Two main processes contributing are single W and W pair production
- Typical Feynman diagrams for single W and W pair production are shown below

- We would like to idenfity single W production at MC level first.
- q² < 400 GeV² [q² is change in four momentum of outgoing electron]
- 40 < m_{qq} < 120 GeV
- $m_{recoil} < 60$ or $m_{recoil} > 120 \, GeV$

•
$$e_{qq} < 0.48 \sqrt{s}$$
 or $e_{qq} > 0.52 \sqrt{s}$

Single W selection Single V selection Reconstructed level

- Having identified single W production at MC level, we would like to do the same thing at reconstructed level.
- Most of time, electrons go down beam pipe. If reconstructed I[±] with E > 100GeV, it will be selected.
- Rest of PFO force into 2 jets, with fast jet algorthm(kt R=1.5).
- Recoil four momentum is calculated by √s minus four momenta of dijets, taken account into samll beam crossing angle(10mrad).
- Mass of W is calculated from qq jets.

- First we tried simple "rectangular cuts"
- $m_{vis} < 300 GeV$
- Veto events with leptons

Single W selection

- Besides simple cuts, also tried MVA BDT.
- Singal: Single W; Background: Other qqlu. Variables:
- m_{recoil}
- e_{vis}
- acolinearity_{lepton,missing}
- *acolinearity*qq
- COShigh energy jet
- COS_{qq}

- To extract m_W after cuts, we used a simple fit.
- Fit function: Breit-Wigner convolved with gaussian

$$\frac{\text{prefactor}}{(m-m_{fit})^2+m_{fit}^2\Gamma_W^2}\otimes\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(m-m_{fit})^2}{2\sigma^2}}$$

- where m_{fit} is the fitted m_W
- \blacksquare Γ_W is set to decay width of W boson
- σ is the fitted resolution.
- Fitted range : bins above 80% of hightest peak

- Fitted m_W . Red is fit. Blue is extrapolation
- **Top row left to right**, $m_{fit} = 80.42$ and 81.05.
- Bottom row left to right, $m_{fit} = 81.03$ and 81.05

- Bias: $m_{fit} \neq m_W$. Out by few hundred MeV.
- We can calibrate the bias by measuring *m_Z*, as *m_Z* is known to 2MeV.
- Assuming similar process like single Z production would have same bias.

- Single Z production occurs in ee -> qq\u03c0\u03c0 v\u03c0 and ee -> qqll samples.
- However, single Z production has a small cross section in ee -> qqll sample.
- We chose ee -> qq νν samples. Main processes are single Z and Z pair production

- As before, we would like to identify single Z production at MC level.
- **5**0 < m_{qq} < 130 GeV
- $m_{recoil} < 50 \, GeV$ or $m_{recoil} > 130 \, GeV$

- Similarly, use simple "rectangular cuts"
- 40 < m_{qq} < 130 GeV
- $m_{recoil} < 50 \, GeV$ or $m_{recoil} > 130 \, GeV$

- We also used MVA BDT to select signal-single Z production from background-ZZ production, with
- m_{qq}
- m_{recoil}
- acolineraity_{qq}

- Using as simple fitting function as before. Fitted m_Z .
- **Top row left to right**, $m_{fit} = 91.21$ and 91.91
- Bottom row left to right, $m_{fit} = 91.90$ and 91.91

- Bias: $m_{fit} \neq m_Z$.
- However, it has similar bias as single W production
- We can calibrate the bias by measuring m_Z , as m_Z is known to 2MeV.

 To justify that single W and single Z production may have same bias, we compared some parameters of two.
 Reconstructed quantites after MC selection.

- Some more parameters for comparisions of single W and single Z production
- Reconstructed quantites after MC selection.

- To compare m_{fit} from single W and single Z production, we normalised m_{fit} to m_W or m_Z .
- MC *m*_{fit} after MC cut is shown.
- Single W production has a higher peak.

- Compare normalised reconstructed *m_{fit}* after MC cuts.
- Single W production has a higher peak.

- Compare normalised reconstructed m_{fit} after simple "rectangular cuts".
- Single W production has a higher peak.

- Compare normalised reconstructed m_{fit} after MVA BDT cuts.
- Single W production has a higher peak.

Errors are noted in brackets

Cuts	M_W/GeV	M_Z/GeV
MC afterMC cuts	80.4216±0.0017	91.2109±0.0042
Reco after MC cuts	$81.0583 {\pm} 0.0295$	$91.9157 {\pm} 0.0396$
"Rectangular"	81.0321±0.0204	91.9045±0.0387
MVA BDT	81.0473±0.0202	91.9057±0.0394
Best	80.385±0.015	91.1876±0.0021
Cuto	Effici	onov Durity

Cuts	Efficiency	Purity
W "Rectangular" Cuts	96%	46%
W MVA BDT $>$ -0.04 Cuts	95%	49%
Z "Rectangular" Cuts	95%	94%
Z MVA BDT $>$ -0.05 Cuts	90%	97%_

Difference in MeV is estimated by $(M_{W,fit}/M_{Z,fit}-1) \times M_{W,best}$

Cuts	Norm M_W	Norm M_Z	Diff
MC: MC cuts	1.00034±0.00002	1.00019 ± 0.00003	12±3
Reco: MC cuts	$1.00921{\pm}0.00033$	$1.00840 {\pm} 0.00037$	$65{\pm}40$
" Rectangular"	$1.00780 {\pm} 0.00025$	$1.00831{\pm}0.00036$	41±35
MVA BDT	$1.00799 {\pm} 0.00028$	$1.00832{\pm}0.00037$	26±37
Best	$1{\pm}0.00019$	$1{\pm}0.00002$	$0{\pm}15$

- Single W and Z measurements have similar bias.
- On its own, single W and Z measurements have similar biases of few hundred MeV.
- If we assume that m_Z is known to 2MeV, m_W can be calibrated to tens of MeV.
- Normalised m_W and m_Z are consistent within errors.
- Precision is limited by sample size. A larger sample would decrease errors and improve measurements.

Thank you!

Boruo Xu xu@hep.phy.cam.ac.uk

Boruo Xu (Univeristy of Cambridge) - Measuring W Mass in 1.4TeV CLIC_ILD