Thin sensor test beams: status and future plans

Sophie Redford on behalf of the LCD vertex group

CLICdp collaboration meeting 11.06.14

Thin sensor test beams: status and future plans

- 2013 DESY test beams
- Test beam data analysis
- Comparison of data with simulation
- 2014 LNLS test beam
- Sensor calibration
- Upcoming 2014 CERN test beams
- Sensor procurement

2013 DESY test beams

- 7 weeks of test beam at DESY between Feb 2013 and Feb 2014
- Data recorded with 17 different sensors:

Assembly	Sensor	Sensor thickness	Sensor	Sensor edge	ASIC thickness
B04-W0110	Advacam	50	p-in-n	50 um active	750
A06-W0110	Advacam	50	p-in-n	20 um active	750
C04-W0110	Advacam	50	p-in-n	50 um active	750
C06-W0110	Advacam	50	p-in-n	20 um active	750
J09-W0110	Advacam	50	p-in-n	50 um active	750
C06-W0126	Micron	100	p-in-n		100
D05-W0126	Micron	100	p-in-n		100
D09-W0126	Micron	100	p-in-n		100
L04-W0125	Micron	100	p-in-n		750
L05-W0125	Micron	100	p-in-n	~1754	750
D04-W0125	Micron	150	n-in-p	i sin eve	750 The
D05-W0125	Micron	150	n-in-p	recorded	750
D08-W0125	Micron	150	n-in-p	Jeu	750
B06-W0125	Micron	200	n-in-p		750
B07-W0125	Micron	300	p-in-n		750
110-W0015	Canberra	300	p-in-n		750
D03-W0170	Canberra	500	p-in-n		750

• Validate simulation and extrapolate to 25 um pixels

200 um thick Sensor wafer

50um Sensor on 750um ASIC functional Timepix assembly

100um ASIC -on-100um Sensor functional Timepix assembly

Test beam data analysis: detection efficiency

 Is a hit detected where we expect from using the telescope to extrapolate track to DUT? C06-W0126 Dec13 - Work in progress

• Edge efficiency: how does the detection efficiency vary at the edge of the sensor?

Charge sharing and resolution

X residual (mm)

Test beam simulation: AllPix

- AllPix: a general purpose pixel detector simulation and digitisation framework
 - based on Geant4 and TCAD
 - fully customisable geometry
 - used for simulation of test beam and lab measurements
 - used in ATLAS and CLICdp
- Will allow extrapolation of test beam results to small-pitch pixels

Comparison of data with simulation

Percentage of the clusters for different cluster sizes Percentage of the clusters for different cluster sizes number of events (%) number of events (%) 50 80 Simulated 50um sensor Simulated 100um sensor 70E Charge sharing increases 40 60E with sensor thickness 50 30 40 20 30 20E 10 10F 0 size 1 (1x1) size 2 (1x2) size 2 (2x1) size 2 (2x2) size 3 (2x2) size 4 (2x2) size 1 (1x1) size 2 (1x2) size 2 (2x1) size 2 (2x2) size 3 (2x2) size 4 (2x2) else cluster size cluster size Entries Entries 0.2 0 50 [µm] sensor, 750 [µm] ASIC 300 [µm] sensor number of events (%) 80 Data: Run 466 But not enough charge Data: run 292 Simulation sharing in simulation Simulation 60 compared to data max TOT 0.1 $Q_{rel} =$ 40 total TOT Relative charge (how 20 0.05 the charge is shared 0 between two pixels) $\sum_{\substack{size \ 1 \ (1_{x_{1}})}}^{size \ 2} \sum_{\substack{size \ 2 \ (2_{x_{1}})}}^{size \ 2} \sum_{\substack{size \ 2 \ (2_{x_{2}})}}^{size \ 3} \sum_{\substack{size \ 4 \ (2_{x_{2}})}}^{size \ 4} \sum_{\substack{size \ 2 \ (2_{x_{2}})}}^{size \ 3} \sum_{\substack{size \ 4 \ (2_{x_{2}})}}^{size \ 4} \sum_{\substack{size \ 3 \ (2_{x_{2}})}}^{size \ 5} \sum_{\substack{size \ 3 \ (2_{x_{2}})}}^{siz$ looks suspect 0.8 0.9 0.6 0.7 \mathbf{O} 5 Relative charge: cluster size 1x2

Resolution comparison

 Resolution too good in simulation (charge weighted method, also true of eta correction method)

Future plans for AllPix:

- Understand charge sharing difference with data
- Introduce noise due to electronics
- Better electric field simulation in sensor
- Simulate active edges on sensors

2014 LNLS test beam

²⁴¹Am

26.2

Mn

Indium

24

Fe

²⁴¹Am

60

Ni

• Fluorescence measurements with 10¹² photons per second

⁰⁹Cd

22.9

Cu

• Additional calibration points for sensor A06:

Brass

8.1

Cr

⁵⁵Fe

5.8

Co

CERN Target/Source

Target

LNLS

E (k α) in keV

Additional data from LNLS better constrains the 'knee'

Analysis of systematic uncertainties ongoing

Application of calibration to DESY test beam data

- Global calibration of DESY test beam data of sensor A06 using CERN, LNLS data
- Energy distributions of cluster sizes close up but don't align - high energy deposits tend to have larger cluster sizes
- Landau MPV as expected for 50um sensor

Sensor procurement I

- Summer: Timepix3 + Canberra sensors to test ASIC
- Summer: CLICpix + CCPDV3 sensors (HV-CMOS active sensor with capacitive coupling)
 - Test feasibility of low mass interconnect with layer of glue
- Autumn: Micron production of sensors matching CLICpix footprint (25 x 25 um pixels)
 - First trial for die bonding and bump bonding using indium bumps to take place at SLAC using CLICpix

CLICpix design for Micron production

Micron production wafer layout

Sensor procurement 2

Long term: Advacam multi-project wafer:

- ATLAS, UNIGe, CLICdp
- 15 thin wafers: 5 x 50um, 5 x 100um, 5 x 200um
- Timepix I, Timepix3 and CLICpix compatible sensors
- 20um and 50um active edges
- Possibility to flip-chip to Timepix3 with TSV (parallel project with CEA-Leti) (end of the year)
 - TSV already demonstrated with Medipix3
 - next phase:TSV with 50um thick Timepix3

Medipix Collaboration + CEA-Leti

ADVACAM multi-project wafer layout

2014 CERN test beams

Igor Rubinskiy - TIPP'14

		Particle type	Energy, GeV	N particles per pulse	length, seconds	next pulse/bunch/spill
DESY II	LINAC primary	e (prim.)	6.3	< 10 ¹⁰	eff~0.040	0.080 (12.5 Hz)
	secondaries	e + /e-	1-6	< 10 ³	instant	>1µs
CERN	PS East (T9)	e/hadrons/µ	1 – 15	< 10 ⁶	0.400	33.6
	SPS North (H6)	e/hadrons/µ	5 – 205	< 10 ⁸	4.9 – 9.6	14 - 48

- Timepix I: time structure is much less favourable for the shutter-based slow readout, leading to a much lower data-taking efficiency at CERN than at DESY
- Timepix3 the readout is much faster, resulting probably in a better data-taking efficiency
- PS:August 14 21, October 1 8
 - additional 100-on-100 assemblies, repeat 300um silicon sensor, new Timepix3 and CLICpix+CCPDV3 tests, rate limited so focus on basic runs, nominal parameters, telescope integration
- SPS: November 10 17
 - CLICpix+CCPDV3 at higher rate, CLICpix hybrid assemblies, Timepix3 at higher rate, angle runs, bias and threshold scans

Thin sensor test beams Summary

- Successful test beam campaign at DESY still in the process of analysing and extracting results
- Data analysis including efficiencies, resolutions and calibrations
- Simulation will be validated against data, then used to study further properties of thin assemblies and extrapolate to smaller pitch
- LNLS test beam improved sensor calibration
- CERN test beams later this year: testing new readout ASICS and assembly technology

