

Update on the TSV project

Medipix TSV project

Objectives :

- Fabrication of a read-out chip with Through-Silicon Vias (TSV)
- » Assembly of a particle detector on top of it
- » Proof of concept

Project status

- » Demonstrate feasibility of TSV processing on Medipix3.1 – completed
- Demonstrate mastery of yield using Medipix3RX wafers – on-going
- Demonstrate feasibility of TSV-last processing on Timepix3 wafers sensor – on-going

Medipix3 ready for TSVs

All IO logic and pads contained within one strip of 800mm width

All IO's have TSV landing pads in place

Permits 4-side butting

94% sensitive area

) je

Redistribution Layer Design

Active chip

RDL details

Noise Performances

We could notice only a slight difference

5

Imaging Test Setup

- » X-Ray chamber 35kV, 1mA
- » Hybrid Pixel
 Detector was
 positioned in front
 of the X-Ray beam
- A biological sample (fish) placed before the detector

Imaging Test Setup

- The sensor bias current was high when applied through TSV (tens of μA in full depletion voltage region)
- Without sensor bias wire bonding via the TSV it was clearly better (few μA)
- » The quality of the assemblies is good. Unfortunately assemblies have not been tested before mounting so we cannot yet quantify the impact of chip-onboard integration

Latest Developments

- » Imaging capabilities with a TSV-processed Medipix3 chip has been demonstrated
- » A lot of 6 Medipix3RX wafers has been processed (the delivery is expected in one week), to demonstrate a reasonable yeld
- » Design of a redistribution layer for Timepix3, aimed at producing ultra-thin Si assemblies is ongoing

Thanks for your attention