Impact of non-uniform B field on tracking performance

Rosa Simoniello Supervisor: Konrad Elsener

Outline

- Brief introduction + workflow
- Non-uniform B-field cases studied:
 - 1% variation along z direction
 - □ 10% variation along z direction
- Comparison of the tracking performance
- Comparison with the CMS case
- Conclusions and next steps

Magnetic system overview

- Central solenoid + 2 forward anti-solenoid superconducting magnets
 - Main functions of the anti-solenoids:
 - to protect QD0 (final focusing) quadrupole) from demagnetization
 - to reduce the local central solenoid magnetic field in order to limit perturbation of the incoming particles

- Effects of the magnetic field to be considered:
 - Field outside detector is important because it can cause *perturbation* in other magnetic fields
 - Beam crossing angle of 20 mrad \rightarrow particles see also a perpendicular field component => distortion of the trajectory and luminosity loss
 - Distortion of the field is important because it can distort particles trajectories => *tracking performance are affected* (like the track resolution and the track efficiency reconstruction) \rightarrow no calo performance are studied at the moment

Workflow

1) Geometry definition: compact.xml + GeomConverter

Non-uniform B field introduced by a map with position coordinates and field values

 Simulation: SLIC (based on Geant4 → interaction of particle in matter)

→ Tracker hits are simulated according the nonuniform B field

3) Reconstruction: LCSim

 \rightarrow Uniform B field assumed (value at the IP):

- CPU usage + no tracking reconstruction code
 - available for non-uniform B field (also CMS choice)

Non-uniform B-field map: ~1% variation

- •
- First case studied: ~1% variation of the field along the z direction. Probably not realistic case: homogeneity of the field due to a doubling of the solenoid in the coil extremities \rightarrow not possible from the engineer prospective

5

Non-uniform B-field map: 10% variation

- From beam line studies, expected a 10% variation of the B-field along the beam line direction (20 mrad)
- More realistic expectation
- *Preliminary results* obtained imposing a 10% variation of the Bz component independently from the Br component inside the main tracker region
 - A proper map for the SiD detector concept is under derivation (thanks to Benoit Cure)

Tracking performance – number of hits

Comparison with CMS

SiD with reduced iron yoke in the endcap will be used (CLIC_2014_L5m_R7m) → expected a bit more non-uniform field => more relevant for these studies

۲

Thanks to Benoit Cure and Nicola Amapane

- CMS pays a lot of attention to field in the yoke (arXiv:0910.5530)
 → less critical for CLIC
- Field inside the tracker region pretty uniform (long solenoid)
 - Main non from nonsymmetry in z (different number of spires in the coil)
- Tracker field mapped with an accuracy $<0.1\% \rightarrow$ important for physical analysis:
 - measurements of track parameters near the interaction vertex
 - to limit bias in the momentum scale (w.r.t. the momentum resolution)

	CMS	SiD
B [T]	3.8	5.0
L [m]	12.5	6.4
R [m]	3.0	5.4

Rosa Simoniello (CERN) - CLICdp workshop - 10/06/2014

Conclusions and next steps

- *Non-uniform B-field* is an important aspect to take into account during the design of the detector
- Distortion of the particle trajectory → effects on the tracking performance
 - □ Not negligible effects are observed for B-field non-uniformities of 10%, in particular for the momentum resolution performance
 → variation of the B-field of 5-10% looks as a realistic expectation
 - Work on-going to have a proper B-field map for SiD
- CMS benefits of a more uniform B-field in the tracker region thanks to the longer solenoid
- Important to study the case of the new geometry (with the longer tracker) → the longer dimension of the solenoid could provide a more uniform field as well

Rosa Simoniello (CERN) - CLICdp workshop - 10/06/2014

B field in CMS

Tracking performance – reconstructed p

Log y scale

 μ , p = 1 GeV

 μ^{-} , p = 10 GeV

μ^{-} , p = 100 GeV

Tracking performance – reconstructed p

Linear y scale

Tracking performance – p resolution

In the forward region beyond the worse resolution it seems to be also a *bias in the momentum reconstruction* (not centered at 0)

- → Some double peak distributions (more evident at high p where the better resolution allows to distinguish the peaks)
- → The performance are actually worse than what it looks like

Comparison between 5 T and 4.5 T B field, uniform and non-uniform

1.4

Ξ

Comparison between rescaling methods

rescaled_ILD_MagField_rho_z_Brho_Bz_MatchSiDAntiOn_plot SiD style 3-5**809** 5000m]

Rescaling function for ILD map to match SiD expectation

The ILD and SiD Bz and Br field projection are fitted with a parabolic function:

 $f(x) = a + bx + cx^2$

The rescaling function obtained as the ratio of the two fitted functions

$$F_{Bz,Br}^{rescaling}(\vec{x}) = f_{Bz,Br}^{SiD}(\vec{x}) / f_{Bz,Br}^{ILD}(\vec{x})$$

and then applied to rescaled ILD field to SiD expectation

$$B_z^{rescaled} = B_z^{ILD}(\vec{x}) F_{Bz}^{rescaling}(\vec{x}), \qquad B_r^{rescaled} = B_r^{ILD}(\vec{x}) F_{Br}^{rescaling}(\vec{x})$$

Choice of LCSim 2.5 and not CDR version

Better resolution for CDR version. But CDR version gives results better than expectation too...