Status of the Validation of the CLIC_SID_CDR Tracker Geometry in DD4hep

N. Nikiforou CERN/PH-LCD

CLICdp Collaboration Meeting CERN, June 10th, 2014

Introduction

- We have been working on *validating* the geometry description of the CLIC_SID_CDR detector model with DD4hep
- Use DD4hep/examples/CLICSiD
- Study limited on the tracker for now (also decreases the complexity of the validation problem)
- Performing various checks against the geometry provided by the existing GeomConverter chain

June 10th, 2014

Checks on compact.xml

- Compact.xml for DD4hep based on definition for GeomConverter -> Both very similar
- Verified by visual inspection/ diff
- Not backward compatible. Changes in DD4hep compact file:
 - Changes in segmentation definitions
 - Require/assume explicit use of units
 - Require explicit use of reflect="true" if detector reflection about z=0 plane is required (was assumed by default true in GeomConverter chain)
- A few instances of discrepancies wrt the above were discovered and corrected (to be propagated to the DD4hep/examples/CLICSiD driver)

Checks on Driver Code

- DD4hep driver code was based on/influenced by the GeomConverter java driver code
- Performed basic visual inspection/comparison of classes
- Verified/checked cases where rotations/placements were ambiguous
- In DD4hep: moving towards using "assemblies" instead of "envelope volumes" of "vacuum" (aka very dilute air or H)
 - Envelope volumes can create overlaps and confuse Geant4
 - Need to use latest revision of Slic:
 - GDML_version = "v03-00-02", LCDD_version = "v03-02-00", SLIC_version = "v03-01-03"
 - Initially not able to see hits from muons in Slic. Cause tracked down to use of envelope volumes
- Changes to be propagated to the example driver code

CLICdp Collaboration Meeting

CLIC_SID_CDR Tracker with the DD4hep geoDisplay

Removed coil, calorimeters and muon system

Comparison of Geometry Visualizations

- Used Slic as a common processor to produce visualizations of the detector using the two different chains
 - Dumped HepRepXML files to be viewed with JAS/Wired
 - Dumper GDML files for viewing with ROOT (, ...)
 - Inspection of model in G4 OpenGL viewer
- Files are several tens of thousands of lines long
 - Diff comparison/inspection infeasible/inefficient
 - Still was useful to track down specific discrepancies
- Employed visual inspection/overlay (especially wireframe)
 - Allowed to track down cases of misalignment or discrepancies in orientation
- The next few slides show and compare global tracker views
 - During the inspection we looked and compared individual subdetectors and modules as well

Compact.xml->DD4hep->slic->HepRepXML

Compact.xml->GeomConverter->slic->HepRepXML

Visualized using JAS/Wired

Compact.xml->DD4hep->slic->GDML

Compact.xml->GeomConverter->slic->GDML

GDML Visualized using **ROOT's Geometry Manager 520** -620

Check on Position of Simulated Hits

- Used Slic/Geant4 to generate Muons with exactly the same parameters and compared the properties of the simulated hits in the two realizations of the model
- Observing the same number of hits but with differences in their positions
 - Differences appear to depend on muon energy and Magnetic field -> possibly differences in the field definition (?)

CERN

With the field OFF there are still	<u>DD4hep</u> Printing hits in SiVertexBarrelHits 0. $x=0.000098$, $y=26.877269$, $z=-49.9999$, $R=26.877$, $\phi=1.57$
some discrepancies -> Investigating	 x=0.000142, y=57.934349, z=-49.9999, R=57.934, φ=1.57 x=0.000196, y=50.789984, z=-49.9998, R=50.790, φ=1.57 x=0.000263, y=64.622135, z=-49.9998, R=64.622, φ=1.57 x=0.000329, y=77.559984, z=-49.9997, R=77.560, φ=1.57
GeomConverter Printing hits in SiVertexBarrelHits 0. x=0.000100, y=27.329005, z=-49.9999, R=27.329, φ=1.57 1. x=0.000127, y=38.355969, z=-49.9999, R=38.356, φ=1.57 2. x=0.000157, y=51.210000, z=-49.9998, R=51.210, φ=1.57 3. x=0.000194, y=65.042294, z=-49.9999, R=65.043, φ=1.57 4. x=0.000231, y=77.980000, z=-49.9997, R=77.980, φ=1.57	Printing hits in SiTrackerBarrelHits 5. x=0.001046, y=224.254509, z=-49.9993, R=224.255, ϕ =1.57 6. x=0.002344, y=474.488246, z=-49.9984, R=474.488, ϕ =1.57 7. x=0.003805, y=720.527110, z=-49.9976, R=720.527, ϕ =1.57 8. x=0.005287, y=970.903662, z=-49.9973, R=970.904, ϕ =1.57 9. x=0.005357, y=980.096554, z=-49.9973, R=980.097, ϕ =1.57 10. x=0.006977, y=1218.43834, z=-49.997, R=1218.44, ϕ =1.57
Printing hits in SilrackerBarrelHits 5. x=0.000629, y=226.579967, z=-49.9990, R=226.578, ϕ =1.57 6. x=0.001219, y=476.796534, z=-49.9977, R=476.797, ϕ =1.57 7. x=0.001440, y=722.833060, z=-49.9962, R=722.833, ϕ =1.57 8. x=0.001796, y=973.200726, z=-49.9946, R=973.201, ϕ =1.57 9. x=0.001773, y=982.415081, z=-49.9946, R=982.415, ϕ =1.57 10. x=0.000884, y=1220.739507, z=-49.994, R=1220.74, ϕ =1.57	

Summary - Conclusions

- Validation of CLIC_SID_CDR geometry ongoing
 - Study presented limited to tracker -> can provide the starting point for a CLICdp detector Silicon Tracker geometry model
- Visual validation complete
 - Any discrepancies were fixed/resolved and will be propagated to the CLICSiD example driver
- Currently checking position of hits from Simulated muons
- A good exercise in implementing a detector geometry in DD4hep
- Study also serves in identifying and fixing possible issues in the compact->DD4hep->LCDD->SLIC chain

