

FCC software infrastructure status

Clément Helsens, CERN-PH

CLIC collaboration meeting 10-11 June 2014

On behalf of the FCC-software task force (experiments and SFT)

Many thanks to B. Hegner for the input

Outline

- 1. Introduction
- 2. Software environment for FCC
- Framework / Data model
- 4. Detector description
- Simulation / Reconstruction and analysis code
- 6. FCC-hh example
- 7. Next steps

Outline

- 1. Introduction
- 2. Software environment for FCC
- Framework / Data model
- 4. Detector description
- Simulation / Reconstruction and analysis code
- 6. FCC-hh example
- Next steps

FCC-software is a common effort between hh, ee and he

Effort just started, so more questions than answers in this talk

1. Introduction

What is FCC?

- Future-Circular-Colliders
- Build a 80-100 km tunnel to host new collider(s)
 - 1) pp-collider (FCC-hh) → defining infrastructure requirements
 - ~8.3 Tesla (LHC dipoles) $\Rightarrow \sqrt{s}=42$ TeV pp in 100 km (NbTi)
 - ~16 Tesla $\Rightarrow \sqrt{s}=100 \text{ TeV pp in } 100 \text{ km (NbSn}_3)$
 - ~20 Tesla $\Rightarrow \sqrt{s}=100$ TeV pp in 80 km (HTS)
 - Lead-Lead collider possibility
 - 2) e⁺e⁻ collider (FCC-ee, old TLep) as potential intermediate step
 - Tera-Z, Oku-W, Mega-H, Mega-Top
 - 3) p-e (FCC-he) option

Events

- FCC Kick-off meeting 02/2014:
 http://indico.cern.ch/event/282344/
- First FCC-hh workshop 05/2014: http://indico.cern.ch/event/304759/
- 7th FCC-ee workshop: 19-21/06 http://indico.cern.ch/event/313708/

 FCC-software task force: fcc-experiments-sw-dev@cern.ch

FCC, but where?

- One possibility could be to host the collider in the Geneva area
- Strong support from CERN
- Various infrastructures already exist
- Including injectors (LHC as injector?)

FCC, but who?

- Following a recommendation of the European Strategy report, in Fall 2013 CERN Management set up the FCC project, with the main goal of preparing a Conceptual Design Report by the time of the next ES (~2018)
- Links established with similar studies in China and in the US

China:

- Future High-Energy Circular Colliders WS,
 Bejing, 16-17 December 2013
 http://indico.ihep.ac.cn/conferenceDisplay.py?confld=3813
- 1st CFHEP (Center for Future High Energy Physics) Symposium on Circular Collider Physics, Beijing, 23-25 February 2014 http://cfhep.ihep.ac.cn

US:

- Physics at a 100 TeV Collider
 SLAC, 23-25 April 2014
 https://indico.fnal.gov/conferenceDisplay.py?confld=7633
- Next steps in the Energy Frontier
 Hadron Colliders, FNAL, 25-28 August 2014
 https://indico.fnal.gov/conferenceDisplay.py?confld=7864

2. Software environment

Where we are

- With respect to the LHC
 - We are in a quite rosy situation
 - Large choice of SW products to choose from in terms of generators, detector simulation, visualization, reconstruction, analysis...
- No pre-canned solution
 - We have to work out our own way
 - The best we can do is to isolate promising packages
 - Evaluate and figure out if they satisfy our needs
- What we should start to do
 - Gathering requirements is the principle activity we should concentrate on
 - We are not aiming at coming up with the ultimate solution either,
 the idea being to support simulation activities in the next few years
 - At some point will have to wrap up all ideas and get to a synthesis

Software environment

- Fields to find solutions for:
 - Core Framework
 - Simulation, Detector Description, Reconstruction
 - Data Model, Analysis
 - Development Environment
- Driving considerations:
 - Not many people and ambitious goals
 - → pragmatic start needed and share software whenever possible
 - LHC software turned out to be complex and specific
 - → FCC has to start as simple as possible
 - As time progresses move to more sophisticated solutions
 - Allow components to be replaced later on, Flexibility
 - Take advantage of effort of other people
 - Give and take
 - Aim for, but don't blindly force, synergy with other communities

3. Framework / Data model

Why a software framework

- Initially one has to be very pragmatic
- Start with simple buildings blocks and make them gradually more sophisticated
- However one has to ensure their interpolability
- A good framework hides complexity
 - With slightly higher costs at the beginning than putting first pieces together directly
 - Allows gradual evolution of the code

Why a software framework

- Initially one has to be very pragmatic
- Start with simple buildings blocks and make them gradually more sophisticated
- However one has to ensure their interpolability
- A good framework hides complexity
 - With slightly higher costs at the beginning than putting first pieces together directly
 - Allows gradual evolution of the code
- FCC will most likely choose GaudiHive STF project
 - Production quality (use by multiple experiments already)
 - Designed for flexibility
 - Experts at CERN
 - Ensure its future-proofness

The data model

- The Data Model defines common data structures for tracks, jets, etc...
- It is one of the most central pieces of the SW
 - Every algorithmic code and every physicist is exposed to it
 - Changing it afterwards is costly, if not impossible
- A good data model is essential for being efficient in development and runtime
- The LHC experiments have very complex data models
 - First of all, they worked
 - Fairly hard to adapt to new technologies like vectorization
 - Not future-proof

If there is one component to really spend time on, it is the data model

4. Detector Description

Detector Description

<u>Detector Description (DD):</u>

- Most obvious candidate singled out to be DD4HEP (used by LC community) http://aidasoft.web.cern.ch/DD4hep
- Generic, XML-based DD system
- Detector visualization and geometry model provided by Root
- Provides straight path to Geant4 via GDML and generic detector constructors, sensitive elements etc...

Yes, look promising but:

- Pretty much embedded into the AIDA toolkit for the ILC/ CLIC
- That makes it hard to install it in standalone mode
- First tests were quite frustrating
- Thanks to B. Hegner who set up a common environment activities are now taking off
- Rather painful and steep learning curve

5. Simulation/ Reconstruction / Analysis code

Simulation

- At different stages different level of detail required
 - generator smearing vs. fast sim vs. full sim
- FCC choices are
 - Custom fast simulation
 - Delphes (https://cp3.irmp.ucl.ac.be/projects/delphes)
 - Geant4
 - GeantV in the future
- Interfacing it to the same framework is the way to progress
- Generators trivially covered HepMC as input standard
- Lots of work, but rather clear what to do
- First visible milestone for new SW would be reproducing existing results w/ Delphes previously

Reconstruction / Analysis

Reconstruction

- Obviously no global solution around, but many individual solutions one can select from
- Requires assessment of existing code
- Whatever is chosen, needs to be adapted to common data model
 - So getting that done is a pre-requisite to everything else

Analysis

- Allow multiple paradigms to do analysis
 - C++ and Python
- Many (n-tuple based) solutions exist
 - People come with their code from different experiments
- Common solution very desirable, but hard to achieve
- Need to collect requirements and needs

6. FCC-hh detector example

What FCC-hh needs?

- Higher energy in the center of mass:
 - More forward particles to detect
 - Particles with higher energies
- Implies:
 - Larger radius (Tracker, more X0 in E-Cal and λ in H-Cal)
 - Longer detector
 - To gain 1 η unit, a detector of fixed inner radius needs to be moved
 2.7 times further away from the IP
 - Calo at 10cm of the beam pipe -> η =6 == 20m!!
 - Stronger magnetic field to get a decent resolution at high p_T
 - To obtain the same tracking resolution from 14 to 100TeV BL² has to be increased by factor 7!
 - Field in single solenoid up to 6.0 T (a la CMS)

Option 1 (CMS inspired)

- 10-12 m diameter, 5-6 T, 23 m long + massive Iron yoke for flux shielding and muon tagging
- Yoke: 6.3 m thick iron needed to have the 10 mT line at 22 m
- 15 m³ mass ≈120,000 tons (>250 M€ raw material)... not viable

50 m D. Fournier, A. Henriques, F. Gianotti and al. 18 m Forward 2.5 mt ID Cavity Forward 2.5 mt ID Cavity 1.6 mt 1.6 mt cavity cavity cavity Valve O Cavity 2.5 mt ID Cavity Forward

Option 2

- A 6 T, 12 m diam x 23 m long main solenoid + an active shielding coil
- Important advantages:
 - Nice muon tracking space area with 2 to 3 T (muon tracking in 4 layers?)
 - Very light 2 coils + structures, ≈ 5 kt, only ≈ 4% of the option with iron yoke!
 - Much smaller system outer diameter is significantly less than with iron

FCC-hh layout

C. Helsens, C. Solans, A. Dell' Acqua

6. Next steps

What is the work ahead?

- Detectors are mostly empty boxes
 - Add more details to our conceptual detector
 - Need to fill them with realistic sensitive material
 - Add more layouts
- Progress with Geant4 simulation ongoing
 - Reshuffle Geant4 code to go our own
 - Add field maps
 - Produce hits and stream them out into a Root tree
 - Plenty of playground for anybody willing to have "fun"
 - Able to shoot single particle into the detector

What is the work ahead?

- External software (ROOT, Geant4, Generators)
 - Infrastructure in place and candidate build in active use
- Geometry Description (DD4hep)
 - Test setup in place
- Core Framework
 - Chose framework and set up examples for FCC
- Data Model
 - Create a data model
- Simulation
 - Interface Delphes, other fastsim, and Geant4 to FWK
- Reconstruction and Analysis
 - Solutions to be chosen
 - Adaption to common data model
- Documentation and Training

Physics milestones and timescales define how pragmatic every item has to be tackled

7. Summary

- Only the first disorganized steps but gaining momentum
- Plenty of room for developers to come and play
- We "Keep It Simple" for the time being!
- Dedicated mailing list set up <u>fcc-experiments-sw-dev@cern.ch</u>
- Synergies with CLIC more than welcome:
 - DD4HEP
 - Common interfaces between DD4HEP and the world
 - Common repository?
 - Common developments?
 - Monte-Carlo database:
 - We are all facing the same problems I guess
 - How to produce/store/share/follow different productions
 - Is it possible to design a common tool?

Bonus

FCC-he simulation

P. Kostka Volumes created using the CLICSiD example

FCC-hh dimensions

European Strategy (Summary)

European Strategy Update 2013 Design studies and R&D at the energy frontier

.... "to propose an ambitious **post-LHC accelerator project at CERN** by the time of the next Strategy update":

- d) CERN should undertake design studies for accelerator projects in a global context,
- with emphasis on proton-proton and electron-positron high-energy frontier machines.
- These design studies should be coupled to a vigorous accelerator R&D programme, including high-field magnets and high-gradient accelerating structures,
- in collaboration with national institutes, laboratories and universities worldwide.
- http://cds.cern.ch/record/1567258/files/esc-e-106.pdf

Timeline

M. Benedickt

- LHC and HL-LHC operation until ~2035
- Must start now developing FCC concepts to be ready in time

Main areas for design study

Preparatory group for a kick-off meeting => Steering committee

Machines and infrastructure conceptual designs

Technologies
R&D activities
Planning

Physics experiments detectors

Infrastructure

Hadron collider conceptual design

Hadron injectors

Lepton collider conceptual design

Safety, operation, energy management environmental aspects

High-field magnets

Superconducting RF systems

Cryogenics

Specific technologies

Planning

Hadron physics experiments interface, integration

e⁺ e⁻ coll. physics experiments interface, integration

e⁻ - p physics and integration aspects

Access time

Ph. Lebrun

Shortest one-way road trip to potential FCC access points [min]

Itineraries by Via Michelin

Sector length

Ph. Lebrun

Cost and electricity

Ph. Lebrun

Electrical power consumption						
Accelerator complex	Nominal [MW]	Standby [MW]				
LHC	122	89				
HL-LHC	141	101				
CLIC 500 GeV	235	167				
CLIC 1.5 TeV	364	190				
FCC e+e-	300?	100?				
FCC pp	250?	150?				

Will FCC pass below the specific cost of 100 kCHF/GeV c.m.?

E_{cm} [TeV] versus B [Tesla]

Role of the superconductor in energy reach at hadron colliders

E=0.3Bρ

Rational Parameter Choice

D. Schulte

- Put together something that is reasonable
 - Somewhat conservative
 - With some aggressive choices to avoid excessive cost
 - To criticise and improve
 - To guide the design work and identify challenges
 - Seed of the baseline
- More aggressive choices will be considered as alternatives
 - When more R&D is required
 - When they involve a performance/cost trade-off
 - http://indico.cern.ch/event/282344/material/3/

Physics/machine parameters

D. Schulte

	LHC	HL-LHC	HE-LHC	FCC-hh
vs energy [TeV]	14		33	100
Luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1	5	5	5
Bunch distance [ns]	25			25 (5)
Background events/bx	27	135	147	170 (34)
Bunch length [cm]	7.5	7.5	7.5	8
Dipole field [T]	8.33		20	16 (20)
Magn. Aperture [mm]	56		40	40
Arc fill factor [%]	79		79	79
Straight section	8x0.5km			16.8km
Total length	26.7km			100(83)km
Stored Energy (MJ)	362	694	601	4573

41

Synchrotron radiation

D. Schulte

	LHC	HL-LHC	HE-LHC	FCC-hh
Dipole field [T]	8.33	8.33	20	16 (20)
Synchr. Rad. in arcs [W/m/aperture]	0.17	0.33	4.35	28 (44)
Eng. Loss p. turn [MeV]	0.007		0.2	4.6 (5.9)
Crit. eng. [keV]	0.044		0.575	4.3 (5.5)
Total synr. Power [MW]	0.0072	0.0146	0.2	4.8 (5.8)
Long. Damp. Time [h]	12.9		1.0	0.54 (0.32)
Transv. Damp. Time [h]	25.8		2.0	1.08 (0.64)

- Values in brackets for 20T magnet field
- Radiation given by beam energy and dipole field
- Leads to damping of the longitudinal and transverse emittance
- Leads to significant power load on the beam screen

Luminosity considerations

D. Schulte

Luminosity is scales as: $L \propto I \xi / \beta^* \propto P_{synrad} \xi / \beta^*$

- Cannot increase the beam current very much
 - Machine protection
 - Arc and magnet design
 - Cooling and power consumption
 - Collective effects
 - Only a fraction of the ring that can be filled with bunches
- Should be able to reduce the beta-function
 - It is easier to obtain small beta-functions with shorter L*
 - Will have a tendency to reduce L* -> impact the experimental area
 - L* = 38m (goal >25m) β * = 0.3m (goal <1.1m)
- Larger luminosity leads to more radiation in the IPs and more background

Assuming L = 3000 fb^{-1} and the first pixel layer at r=3.7cm from the IP the fluence and dose for 14(100)TeV are $1.5(3)10^{16}\text{cm}^{-2}$ and 5(10)Mgy Numbers for an FHC detector are only ~2 the HL-LHC numbers (unless one puts the first pixel closer).

Dose[Gray] $\approx 3.2 \times 10^{-10} \frac{N_0}{2\pi} \times N_{pp} \left(\frac{1}{r[cm]^2} + \frac{a[cm^{-1}]}{r[cm]} \right)$

1MeVneg Fluence =2.8*10¹⁶ cm⁻²

Dose = 9 MGy

The fluence and dose numbers for a distance of 2.5m from the IP for 3000 fb⁻¹ of 100TeV collisions are between 10¹³ and 10¹⁴ cm⁻² and 2-50 kGy.

Others

- Transport element on-site
- Detector maintenance scenarios
- The complexity of the magnetic systems, particularly regarding maintenance raises the question:
 - all-capable experiments to |η|<6
 - high p_T experiments to $|\eta| < 3$
 - forward experiments 2<|η|<6
- Radiation fields
 - Emergency maintenance crews will encounter dose rates of few x 100 microSv/hr x a few worse than at HL-LHC (detailed FLUKA simulations needed)
- Vastly increased trigger bands, HLT intelligence and processing power, readout and storage technology and strategies

The landscape at the TeV scale

M. Mangano

- What's hiding behind/beyond the TeV scale ? (Fine tunning ~ E²_{cm})
- A few crucial questions specific to the TeV scale demand an answer and require exploration:
- Hierarchy problem/Naturalness
 - where is everybody else beyond the Higgs?
- EW dynamics above the symmetry breaking scale
 - weakly interacting? strongly interacting? other interactions, players?
- Dark matter
 - is TeV-scale dynamics (WIMPs) at the origin of Dark Matter?
- Cosmological EW phase transition
 - is it responsible for baryogenesis?

pp at 100 TeV opens three windows:

M. Mangano

Access to new particles→ 30 TeV mass range beyond LHC reach

Immense/much-increased rates for phenomena in the sub-TeV mass range

→ increased precision w.r.t. LHC and possibly ILC

Access to very rare processes in the sub-TeV mass range

→ search for stealth phenomena, invisible at the LHC

Each of these windows requires dedicated physics studies, and poses different challenges to the detector design

Higgs physics

g ooooo H

- Why still Higgs physics in ~ 2040 ?
- "Heavy" final states require high √s, e.g.:
 - HH production (including measurements of self-couplings λ)
 - ttH (note: ttH \rightarrow ttµµ, ttZZ "rare" and particularly clean)

R. Contino VBF Higgs

