

Vinca Institute of Nuclear Sciences Belgrade

H->ZZ*->qqll at 1.4 TeV CLIC

Gordana Milutinovic-Dumbelovic Vinca Institute of Nuclear Sciences, Belgrade

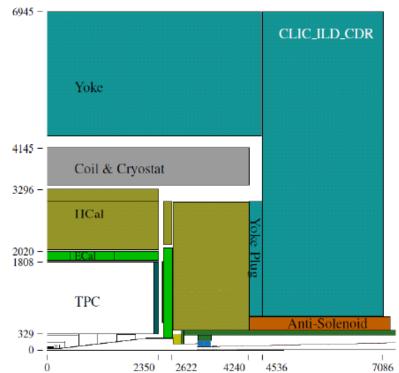
Philipp Roloff, Ivanka Bozovic-Jelisavcic

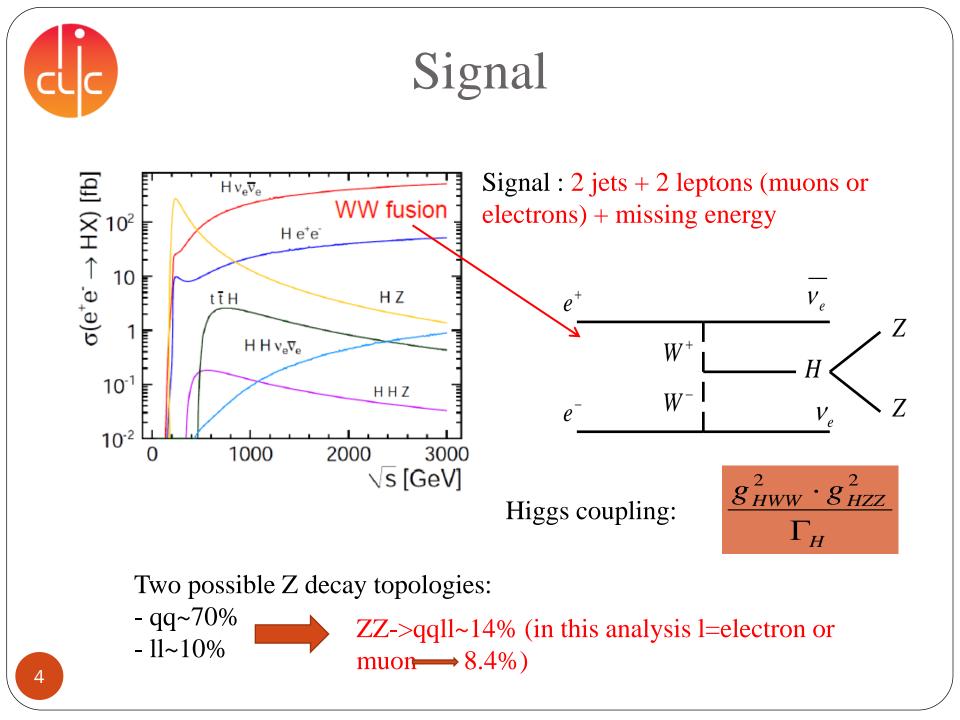
CLICdp Collaboration Meeting, 10th-11th June 2014

dc

Overview

- Simulation and reconstruction
- Signal and background x-sec calculation and event samples
- Analysis strategy
- Preselection
- MVA results
- Next steps
- Conclusions

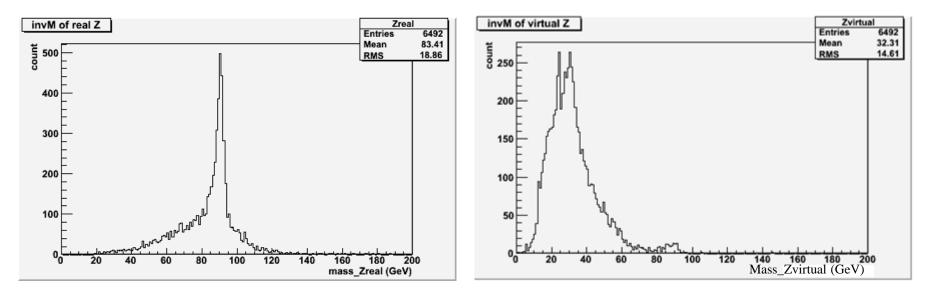

clc


Simulation and reconstruction

- Fully simulated events:

Event generation with WHIZARD v.1.95 including ISR and BS

- Beamspectrum generated with GUINEAPIG
- Hadronization with PYTHIA
- Assuming m_H=126 GeV
- CLIC_ILD detector
- Particle reconstruction and identification using PandoraPFA



Signal

• The reconstruction is based on the pair of jets or leptons (muons or electrons) with the mass closest to the mass of real Z.

"virtual" Z

"real" Z

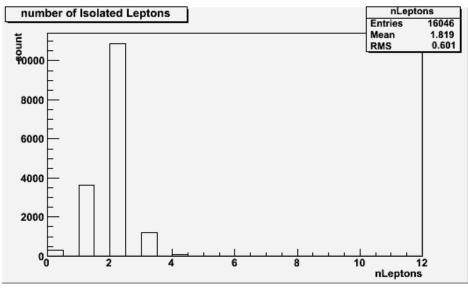
Higgs mass

Signal and bck x-sec calculation

Process	$\sigma[fb]$
$e^+e^- \rightarrow H\nu_e\overline{\nu_e}, H \rightarrow ZZ \rightarrow qqll$	0.6
$e^+e^- \rightarrow qq v_e \overline{v_e}$	788
$e^+e^- \rightarrow qqqq v_e \overline{v_e}$	24.7
$e^+e^- \rightarrow Hv_e\overline{v_e}, H \rightarrow WW$	56.38
$e^+e^- ightarrow qq$	4009.5
$e^+e^- ightarrow qqqq$	1328.1
$e^+e^- \rightarrow qqqql$	71.7
$e^+e^- \rightarrow qqqqk$	115.3
$e^+e^- \rightarrow Hv_e\overline{v_e}, H \rightarrow bb$	136.94
$e^+e^- \rightarrow qqll$	2725.8
$e^+e^- \rightarrow Hv_e \overline{v_e}, H \rightarrow ZZ \rightarrow qqqq / llll$	3.48

 $\gamma\gamma \rightarrow hadrons$ backgound has been overlaid before the digitization phase.

Analysis strategy


• ISOLATED LEPTON FINDER

- FASTJET: Force events into 2 jets, k_T exclusive, SELECTEDPFOs, R=1.0
- **b-TAGGING** (helps to reduce $e^+e^- \rightarrow Hv_e\overline{v_e}, H \rightarrow bb$)
- PRESELECTION
- MVA selection

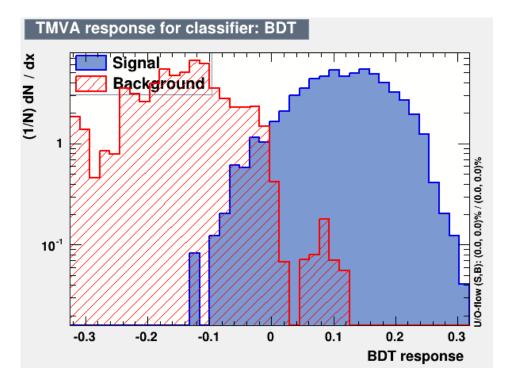
Isolated Lepton Finder

- Etrack = 7 GeV
- cos θ=0.995
- Imact parameters: D0<0.2, Z0<0.2, R0<0.2
- 0.025<Muon Ecal to Hcal fraction<0.35
- Electron Ecal to Hcal fraction>0.94

74% efficiency in reconstruction of the lepton pair

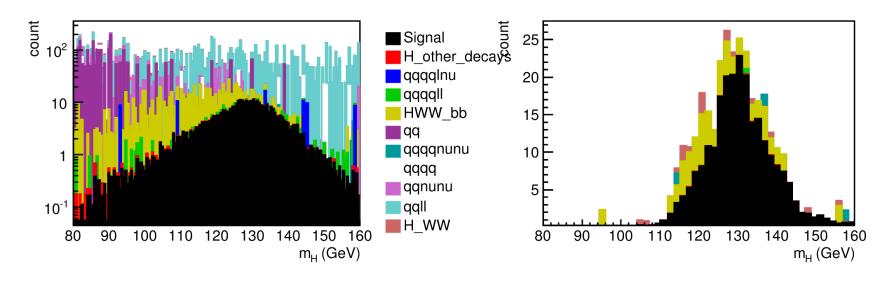
Preselection

- Two isolated electrons or muons
- 50GeV<InvMassZ1<110GeV
- 10<InvMassZ2<60GeV
- 80GeV<InvMassHiggs<160GeV
- 150GeV<Evis<650GeV
- 20GeV<(Evis-HiggsEnergy)<210GeV
- missing_Pt<350GeV
- 50<Number_of_PFOs<150


Results after preselection

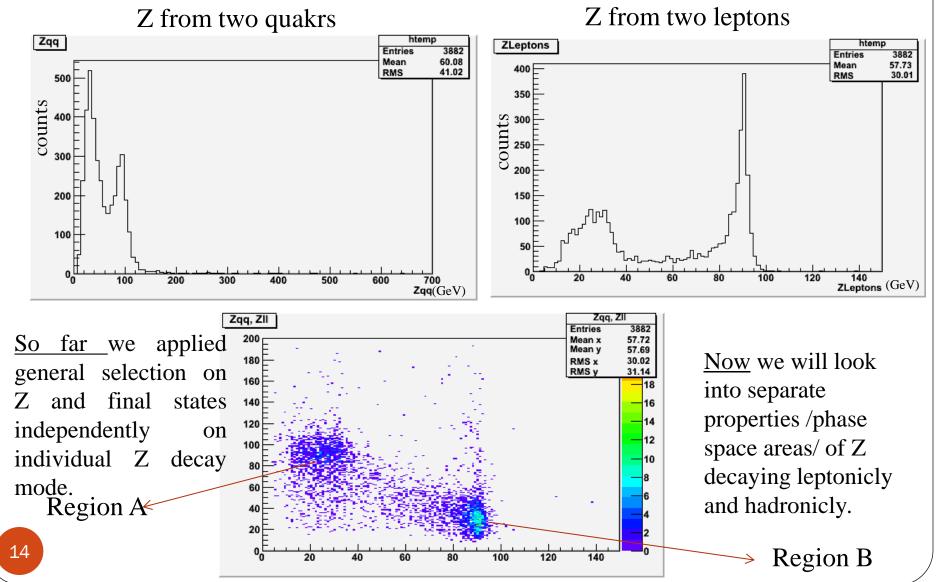
Process	$\sigma[fb]$	ε (%)
$e^+e^- \to Hv_e\overline{v_e}, H \to ZZ -> qql$	<i>l</i> 0.32	54
$e^+e^- \rightarrow qq v_e \overline{v_e}$	0.63	0.08
$e^+e^- \rightarrow qqqq v_e \overline{v_e}$	0.01	0.05
$e^+e^- \rightarrow Hv_e\overline{v_e}, H \rightarrow WW$	0.51	0.9
$e^+e^- \rightarrow qq$	1.2	0.03
$e^+e^- \rightarrow qqqq$	0.13	0.01
$e^+e^- ightarrow qqqql$	0.03	0.04
$e^+e^- \rightarrow qqqqk$	0.03	0.03
$e^+e^- \rightarrow Hv_e \overline{v_e}, H \rightarrow bb$	0.4	0.3
$e^+e^- \rightarrow qqll$	5.45	0.2
$e^+e^- \to Hv_e\overline{v_e}, H \to ZZ \to qqqq/llll$	0.003	0.1

MVA analysis


 TMVA trained with 12 variables (m_{Z1}, -log (y₃₄), -log(y₂₃), -log(y₁₂), P(b)^{jet1}, P(b)^{jet2}, P(c)^{jet1}, P(c)^{jet2}, Evis, missing_Pt, Higgs_angle, m_H) on total background

BDT>0.1

MVA analysis


Preselection efficiency 54%

Overall signal efficiency 40%

$$\frac{\Delta\sigma}{\sigma} = \frac{\sqrt{S+B}}{S} \sim 7.5\%$$

Next steps

Next steps

- Make categorisation:
 - muon type and region A
 - muon type and region B
 - electron type and region A
 - electron type and region B

Next steps

Include background processes:

Process
$e\gamma ightarrow qqqqe$
$e\gamma ightarrow qqqq \nu$
$e\gamma ightarrow qq$
$e\gamma ightarrow qqqq$
$e\gamma ightarrow qq \nu$
$e\gamma ightarrow qqe$

EPA approximation included.

Conclusion

- The status of the $H \rightarrow ZZ^* \rightarrow qqll$ analysis is being presented
- Reasonable preselection efficiency.
- TMVA preserves signal to a large extent.
- Background $e^+e^- \rightarrow qqll$ and $e^+e^- \rightarrow qqv_e\overline{v_e}$ reduced for an order of magnitude.
- An optimization of the MVA training will be done.
- Categorisation of leptons type in two regions of interest will be done.