Status of W-DHCAL Analysis

Christian Grefe (CERN), Thibault Frisson (CERN)

on behalf of the CALICE collaboration and the CLIC physics and detector study (CLICdp)

11. June 2014 CLICdp Collaboration Meeting

Outline

3 Simulation and Digitization (RPCSim)

W-DHCAL setup

Outline

3 Simulation and Digitization (RPCSim)

W-DHCAL setup

Data Taking at CERN (2012)

- 54 RPC layers:
 39 with tungsten absorber (main stack),
 15 with steel absorber (tail catcher)
- Each layer instrumented with 96 \times 96 $1\times1\,{\rm cm^2}$ pads \Rightarrow \sim 500000 channels
- PS (1-10 GeV): 1 run period of 2 weeks
- SPS (10-300 GeV): 2 + 1 + 1 weeks
- Dedicated µ and high rate runs
- In total \sim 30 million events recorded

W-DHCAL setup

Data Taking at CERN (2012)

- 39 layers W-DHCAL + 15 layers Fe-DHCAL
- $10\times 10\,{\rm cm^2}$ scintillator triggers (30 \times 30 ${\rm cm^2}$ for dedicated muon runs)
- Three wire chambers \Rightarrow beam profile
- Two Cerenkov counters \Rightarrow particle identification

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

Outline

Introduction

3 Simulation and Digitization (RPCSim)

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

Goal of Calibration

- DHCAL only measures number of hits
 ⇒ control efficiency (ε) and multiplicity (μ)
- Depends on temperature, pressure, voltage, ...
- Remove layer-to-layer and run-to-run fluctuations
- Determine nominal efficiency (ϵ_0) and multiplicity (μ_0) for digitization tuning

Determination of Efficiency and Multiplicity

- Lose pre-selection for muon events based on number of active layers (> 30) and total number of hits (< 150)
- For each layer of interest **find mip stub candidates** in neighboring layers (±3 layers, min 4 valid clusters)
- Only use clusters with 3 or less hits for mip stub candidates
- Straight line fit to identify intersection with layer of interest, χ^2 cut to validate mip stub
- Determine if cluster exists in layer of interest within 20 mm of intersection
- Efficiency: fraction of events with cluster found (left)
- Multiplicity: mean cluster size for events with cluster found (right)

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

Layout of one DHCAL Layer

- 3 RPC modules per layer
- 2 fronted boards per RPC module

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

Efficiency

- $\bullet\,$ Combine 18 muon runs taken with 30 $\times\,$ 30 cm^2 triggers at 9 positions
- More than 500k events at each trigger position
 - \Rightarrow allows to extract local efficiencies and multiplicities for each pad
- Beam runs only allow to extract efficiency and multiplicity for central region $\Rightarrow 10 \times 10 \text{ cm}^2$ trigger with narrow beam spot
- Average: $\epsilon_0 = 87.1\%$, $\mu_0 = 1.55$ (Raw)

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

Efficiency

- Determine nominal values in clean regions to tune digitization
- Remove module boundaries and fishing lines
 - Effect of fishing lines included in GEANT4 through material
 - Module boundaries effect added in digitization
 - \Rightarrow lower effective charge depending on position
- Average: $\epsilon_0 = 94.6\%$, $\mu_0 = 1.61$ (Cleaned)

Efficiency

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

Multiplicity

- \bullet Average efficiency and multiplicity for each module depending on i / x
- Drop of efficiency in the centre of each module \Rightarrow not visible in Fe-DHCAL
- Multiplicity not affected in a similar fashion

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

Warping of Frontend Boards

Dime for size reference

- Opened several modules to investigate cause of efficiency drop
- \bullet Front end board pressed down on left side \Rightarrow significantly warped boards
- Boards used to be perfectly flat, effect developed over time
- Similar warping observed for boards in lab that were never operated in beam

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

Efficiency

- Remove frontend board boundaries for final cleaning
- These are the regions used for tuning of digitization
- Average: $\epsilon_0 = 95.3\%$, $\mu_0 = 1.61$ (Fully Cleaned)

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

Calibration Procedure

- Correct each hit for its local efficiency and multiplicity to nominal values: $N^{\text{calibrated}} = \sum_{i}^{N} \frac{\mu_0 \ \epsilon_0}{\mu_i \ \epsilon_i}$
- μ_0 and ϵ_0 are determined from the respective regions in the muon runs
- μ_i and ϵ_i are determined for each module if possible (more than 100 entries) \Rightarrow works well only for central module
- Use cleaned regions \rightarrow "cleaned calibration" (averages over central dip)
- Use fully cleaned regions \rightarrow "fully cleaned calibration" (ignores central dip)

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

Response at 40 GeV

Muons

- 2 sets of runs taken at same beam momentum and significantly different temperature and pressure conditions
- Allows to quantify impact of the calibration

Pions

C. Grefe, Status of W-DHCAL Analysis CLICdp Collaboration Meeting, 11.06.2014

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

Response at 40 GeV - Fully Cleaned Calibration

Muons

Pions

- Calibration improves the agreement but still slightly different response
- Dip in central region is present in data but not accounted for in calibration

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

Response at 40 GeV - Cleaned Calibration

Muons

- Including the central region in the calibration gives best results
- Extracted calibration and data is weighted by local beam profile
- Most hits end up in the region with reduced efficiency
 - \Rightarrow important to describe efficiency in centre well

Pions

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

Longitudinal Profiles (40 GeV Muons)

Uncalibrated

Fully Cleaned

- Fully cleaned calibration not sensitive to response in most relevant region
- \bullet Limited statistics in fully cleaned regions \Rightarrow additional fluctuations

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

Longitudinal Profiles (40 GeV Muons)

Uncalibrated

- Excellent correction of layer-to-layer fluctuations when including centre
- Some difficulties for layers with large correction factors

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

- Most runs have sufficient statistics to extract local efficiency for central i-bins
- Cleaned calibration remains as default for each module and layer
- Extract sidebands as fit to flat + asymmetric Gaussian distribution \Rightarrow flat component determines module calibration if fit succeeds
- All i-bins with efficient uncertainty below 5% use local efficiency (95% CL)
- Single multiplicity value determined as mean value over module

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

- Most runs have sufficient statistics to extract local efficiency for central i-bins
- Cleaned calibration remains as default for each module and layer
- Extract sidebands as fit to flat + asymmetric Gaussian distribution \Rightarrow flat component determines module calibration if fit succeeds
- All i-bins with efficient uncertainty below 5% use local efficiency (95% CL)
- Single multiplicity value determined as mean value over module

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

- Most runs have sufficient statistics to extract local efficiency for central i-bins
- Cleaned calibration remains as default for each module and layer
- Extract sidebands as fit to flat + asymmetric Gaussian distribution \Rightarrow flat component determines module calibration if fit succeeds
- All i-bins with efficient uncertainty below 5% use local efficiency (95% CL)
- Single multiplicity value determined as mean value over module

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

- Most runs have sufficient statistics to extract local efficiency for central i-bins
- Cleaned calibration remains as default for each module and layer
- Extract sidebands as fit to flat + asymmetric Gaussian distribution \Rightarrow flat component determines module calibration if fit succeeds
- All i-bins with efficient uncertainty below 5% use local efficiency (95% CL)
- Single multiplicity value determined as mean value over module

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

- Most runs have sufficient statistics to extract local efficiency for central i-bins
- Cleaned calibration remains as default for each module and layer
- Extract sidebands as fit to flat + asymmetric Gaussian distribution \Rightarrow flat component determines module calibration if fit succeeds
- All i-bins with efficient uncertainty below 5% use local efficiency (95% CL)
- Single multiplicity value determined as mean value over module

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

Response at 40 GeV - Local Calibration

Muons

Pions

• Local calibration scheme normalizes responses similar to cleaned calibration

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

Calibration Quality

Cleaned Calibration

- $\bullet\,$ Calculate χ^2 between all response histograms of all beam momenta
- Both calibrations look very good: χ^2/NDF close to 1 for all points

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

Calibration Quality

Cleaned Calibration

- $\bullet\,$ Calculate χ^2 between all response histograms of all beam momenta
- Both calibrations look very good: χ^2/NDF close to 1 for all points

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

Longitudinal Profiles (40 GeV Muons)

Cleaned Calibration

Local Calibration

• Almost indistinguishable performance in correcting layer-to-layer fluctuations

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

Horizontal Dependence of Muon Response (40 GeV) Cleaned Calibration Local Calibration

- Cleaned calibration does not remove horizontal dependence in response
- Local calibration removes dip in response
- Use local calibration scheme as default

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

Muon Response (Local Calibration)

Determination of Efficiency and Multiplicity Calibration Procedure Local Calibration

Pion Response (Local Calibration)

Geant4 Model of Test Beam Setup Digitization Overview Tuning of Digitization Results of Muon Tuning

Outline

Introduction

3 Simulation and Digitization (RPCSim)

4 Summary and Outlook

Geant4 Model of Test Beam Setup Digitization Overview Tuning of Digitization Results of Muon Tuning

Geant4 Model of Test Beam Setup

- Re-use model of beam line instrumentation and absorber structure for main stack and tail catcher from CALICE analog HCAL test beam
- Replace active layers with implementation of RPC cassettes from Fe-DHCAL test beam
- Remaining tasks:
 - Verification of all distances and sizes
 - Fix remaining overlaps

RPCSim (Marlin Version)

- $\bullet~$ Use all charge deposits generated by ${\rm GEANT4}$ stored in SimCalorimeterHits
- Only allow one avalanche within distance cut d_{cut} , ignore other charge deposits
- Randomly generate total charge for each remaining deposit
 ⇒ based on data from RPC with analog readout
- Correct generated charge by offset Q_0
- Lower effective total charge depending on distance to module boundary
- Spread charge according to model and collect charge on pads
 ⇒ uses lookup from pre-calculated Monte Carlo integration
 - RPCSim3 (double exponential): $f(r) = Re^{-r/S_1} + (1-R)e^{-r/S_2}$
 - RPCSim4 (exponential): $f(r) = Re^{-r/S}$
 - RPCSim5 (double Gaussian): $f(r) = Re^{-r^2/(2\sigma_1^2)} + (1-R)e^{-r^2/(2\sigma_2^2)}$
 - RPCSim6: $f(r) = (A + r^2)^{-3/2}$
- Create CalorimeterHit for each pad over threshold t

Introduction Geant4 Mode Calibration Digitization (Simulation and Digitization (RPCSim) Summary and Outlook Results of M

Geant4 Model of Test Beam Setup Digitization Overview **Tuning of Digitization** Results of Muon Tuning

Tuning of the Digitization with Muons

- \bullet Use fully cleaned regions from muon run (660357) as target
- Muon Monte Carlo with a Gaussian spread similar to angular spread in data
- Remove cells from both data sets which have been identified as dead in data
- $\bullet\,$ Pre-select clean muon events using Hough transform $\Rightarrow\,$ remove other hits
- Digitize data with varying Q_0 , t and charge spread parameters
- Response from MiPs not sensitive to d_{cut}
- $\bullet\,$ Compare hits / layer distributions for Monte Carlo and data and minimize χ^2

Introduction Geant4 Model of Test Beam Setup Calibration Digitization Overview Simulation and Digitization (RPCSim) Summary and Outlook Results of Muon Tuning

Preliminary Tuning (RPCSim3)

- Very good description of peak and tail
- $Q_0 = 0.15 \,\mathrm{pC}, \ t = 0.34 \,\mathrm{pC}, \ d_{\mathrm{cut}} = 1.8 \,\mathrm{mm}$
- R = 0.2, $S_1 = 0.1 \,\mathrm{mm}$, $S_2 = 2 \,\mathrm{mm}$
- Discrepancies for distribution of total hits ⇒ Removal of large number of cells requires a very careful reproduction of beam profile in Monte Carlo
- Only use main stack hits after layer 5

Introduction Geant4 Model of Test Beam Setup Calibration Digitization Overview Simulation and Digitization (RPCSim) Summary and Outlook Results of Muon Tuning

Preliminary Tuning (RPCSim5)

- Good description of peak and tail
- $Q_0 = 0.175 \,\mathrm{pC}, \ t = 0.275 \,\mathrm{pC}, \ d_{\mathrm{cut}} = 1.8 \,\mathrm{mm}$
- R = 0.25, $\sigma_1 = 0.2 \, {\rm mm}$, $\sigma_2 = 3.25 \, {\rm mm}$
- Discrepancies for distribution of total hits ⇒ Removal of large number of cells requires a very careful reproduction of beam profile in Monte Carlo
- Only use main stack hits after layer 5

Outline

Introduction

3 Simulation and Digitization (RPCSim)

4 Summary and Outlook

Summary

- W-DHCAL data needs to be corrected for run and layer conditions
- Multiplicities and efficiencies can be determined for each run from muons
- Large efficiency drop in centre of modules (not present in Fe-DHCAL data) \rightarrow different for each layer and run
- Developed local calibration scheme to normalize data
- RPCSim implemented as Marlin processor
- Hough transform based track finding implemented in Marlin \rightarrow used for muon identification and allows study of shower structure
- Very promising preliminary results from digitization tuning with muons

Outlook

- Finalize simulation model
- Use beam profiles extracted from data in simulation
- Optimize particle selection cuts for high purity
- $\bullet~\mbox{Comparison}$ of $\rm GEANT4$ models and test beam data
 - Response: linearity and resolution
 - Longitudinal shower profile
 - Lateral shower profile
 - Track multiplicity in the shower
 - . . .

• Excellent opportunities for student projects

Bonus: Hough Transform

- Implemented Marlin processor to find tracks using Hough transform
- Identify sub-structure in showers
- Identify kinks in muon events

