T3B Results & Plans

CERN, June 2014 CLICdp Meeting

Frank Simon Max-Planck-Institute for Physics

 $70p\Delta g\geq t$

Max-Planck-Institut für Physik
(Werner-Heisenberg-Institut)

Outline

- Time structure in hadronic showers
- CALICE T3B and FastRPC Experiments for timing measurements
- The time structure of hadronic showers
	- In Tungsten and Steel
	- With plastic scintillator and RPC active elements
- Confronting simulations with data
- Summary

Exploring Hadronic Showers in Time

• Hadronic showers have a complex structure - also in time!

Exploring Hadronic Showers in Time

• Hadronic showers have a complex structure - also in time!

 \Rightarrow Importance of delayed component strongly depends on target nucleus

 \Rightarrow Sensitivity to time structure depends on the choice of active medium

The T3B Detector

- 15 scintillator cells with SiPM readout
- DAQ based on 4 channel USB Oscilloscopes (PicoScope), 800 ps sampling, 2.4 µs acquisition per event
- Installed downstream of CALICE calorimeters: W-AHCAL (5λ) , SDHCAL (6λ)
- With W-AHCAL: Synchronisation of data streams possible (and demonstrated): Allows for event-by-event identification of shower start

Alternative Readout: Glass RPCs - Tungsten Only

- Provide a direct comparison of scintillator and gaseous readout: FastRPC - A 1 to 1 copy of T3B, but with a glass RPC instead of scintillators
	- identical granularity: 3×3 cm², one strip behind the CALICE WDHCAL
	- identical data acquisition: 2.4 µs acquisition window with 800 ps readout

5

Data Analysis

Cell-wise reconstruction

- With scintillator / SiPM readout:
	- Reconstruction of time of each photon
	- Reconstruct hits by clustering in time - require at least ~ 0.3 MIP equivalents within 9.6 ns
- With RPC readout:
	- Analogous to SiPM readout, but based on waveform integral
- For robustness: Use only the first hit in each cell in an event avoids uncertainties from hit separation, afterpulsing, … High granularity ensures multiple real hits are rare (at the %-level)
- Main observable: "Time of first hit" Timing given by the second reconstructed photon (SiPM) / start of signal waveform (RPC)

The Time Structure: Tungsten vs Steel

• Hadronic showers characterized by a main prompt signal and a long tail

The Time Structure: Tungsten vs Steel

- Hadronic showers characterized by a main prompt signal and a long tail
	- Late components in tungsten substantially more pronounced than in steel
		- "fast" late component $(- 8 \text{ ns} - 50 \text{ ns})$ enhanced by a factor of \sim 2.3 in W
		- "slow" late component $(> 50 \text{ ns})$ enhanced by a factor of \sim 13 in W)

Frank Simon (fsimon@mpp.mpg.de) *T3B Results & Plans* CLICdp Workshop, June 2014

7

The Impact of the Active Medium: Scintillator vs Gas

- Comparable behavior for prompt component
- Striking difference in intermediate range:

 \sim 8 ns to 50 ns

Absorber material: Tungsten

The Impact of the Active Medium: Scintillator vs Gas

• Comparable behavior for prompt component Striking difference in intermediate range: \sim 8 ns to 50 ns

• Further quantified: Factor 5 - 8 suppression of intermediate component in gaseous detectors: MeV - scale neutrons: High sensitivity of scintillators through

Impact of Time Structure on Shower Shape

• In the outer shower regions late hits are more important: Neutrons spread far, prompt component concentrated along shower axis

Impact of Time Structure on Shower Shape

9

• In general good agreement of simulations with data for steel - slight underestimation of intermediate late component without HP neutron treatment

• Radial dependence well modelled for steel - within a few 100 ps

Frank Simon (fsimon@mpp.mpg.de) *T3B Results & Plans* CLICdp Workshop, June 2014

11

T3B: Longitudinally Resolved Analysis

• Shower start identified in W-AHCAL - used to measure depth of first interaction

Late components more important at rear of shower

T3B: Longitudinally Resolved Analysis

• Shower start identified in W-AHCAL - used to measure depth of first interaction

Next Steps

- One main missing thing: Simulations for FastRPC Will be started once Higgs analysis project at MPP is complete
- To be decided: Publication of Longitudinally resolved data Needs understanding of systematics
	- Problem: Used GEANT4 version is getting old...
- \triangleright Global challenge: T3B "data preservation" Experts have been gone for \sim 9 Months, need to make sure data is useable
	- Can start once current analysis projects have been completed

Summary

- Time structure of hadronic showers highly relevant for calorimetry at future colliders
	- Within CALICE dedicated experiments have been carried out to study it in tungsten and steel with scintillators (T3B) and gaseous detectors (FastRPC)
- In gaseous detectors, the sensitivity to the intermediate time component is reduced in particular the region from a few to a few 10 ns
	- Reduced sensitivity to MeV-scale spallation neutrons due to low hydrogen content of active medium
- The comparison of GEANT4 simulations to the data shows:
	- The time structure in steel is in general quite well described, but profits from high precision neutron models
	- For the simulation of showers in tungsten high precision neutron models are mandatory to reproduce the late components of the shower
	- Simulations to compare to the RPC data in preparation

Backup

 $T = 0$: Activity maximum in layer 39 (rear of calorimeter)

Shown: First hits in each cell only

 $T = 0$: Activity maximum in layer 39 (rear of calorimeter)

Shown: First hits in each cell only

 $T = 0$: Activity maximum in layer 39 (rear of calorimeter)

Shown: First hits in each cell only

 $T = 0$: Activity maximum in layer 39 (rear of calorimeter)

Shown: First hits in each cell only

 $T = 0$: Activity maximum in layer 39 (rear of calorimeter)

Shown: First hits in each cell only

 $T = 0$: Activity maximum in layer 39 (rear of calorimeter)

Shown: First hits in each cell only

 $T = 0$: Activity maximum in layer 39 (rear of calorimeter)

Shown: First hits in each cell only

 $T = 0$: Activity maximum in layer 39 (rear of calorimeter)

Shown: First hits in each cell only

 $T = 0$: Activity maximum in layer 39 (rear of calorimeter)

Shown: First hits in each cell only

 $T = 0$: Activity maximum in layer 39 (rear of calorimeter)

Shown: First hits in each cell only

 $T = 0$: Activity maximum in layer 39 (rear of calorimeter)

Shown: First hits in each cell only

 $T = 0$: Activity maximum in layer 39 (rear of calorimeter)

Shown: First hits in each cell only

Time vs Energy of First Hits in T3B

 Muon Data - 180 GeV

- The "universal" T3B observable: Time of First Hit
	- Multiple hits per tile in one event are rare: < 3% at 30% amplitude of primary hit

Time vs Energy of First Hits in T3B

Muon Steel Data - Hadrons 60 GeV

 Tungsten Data - Hadrons 60 GeV

- The "universal" T3B observable: Time of First Hit
	- Multiple hits per tile in one event are rare: < 3% at 30% amplitude of primary hit
- Substantial difference between showers in steel and tungsten: More pronounced late activity in W

