

Status of scintillator scans

CLICdp collaboration meeting June 11th 2014, CERN

Samir Arfaoui, Damiano Celeste

Introduction, outline

- Goal: R&D on CLIC ScECal with tiles at CERN
- Phase I: use scintillator scan setup to characterise various tile geometries, packaging, and SiPM couplings
- In this talk:
 - assess scintillator tiles response uniformity to MIPs
 - determine temperature correction coefficients
 - apply T-correction to full scans

Feedthrough to lab next door

Readout, Trigger, and DAQ

<u>Readout</u>

- Custom-made PCB (S. Veneziano, Rome) with amplification (~10) as well as temperature monitoring with PT1000 probe. Second version in development (better PCB design, 2-stage amplification).
- DUT signal is read through USB oscilloscope (Picoscope)

<u>Trigger</u>

- Crossed scintillating fibers (20x1x1 mm³) as trigger, fixed underneath DUT
- Hamamatsu MPPC (50 um pitch) glued to painted fibre
- Trigger signals are put in coincidence (NIM) and signal goes to Picoscope <u>LabVIEW DAQ</u>
 - Software for calibration (auto-trigger) and data-taking (with eletron source)
 - Control of the step-motors for scintillator scans
 - Temperature monitoring with NI DAQ Crate

10 June 2014

Measurements performed

Two identical batches of four scintillators. Same MPPC, same bias voltage, same electron gun current (MIPs).

Batch	Run	Size [mm ³]	Packaging	MPPC	Bias [V]	I (eGun) [A]
1	14	20x20x2	3M ESR	50µm pitch	71.3	1.4
1	13	20x20x2	Paint	50µm pitch	71.3	1.4
1	15,28	15x15x2	3M ESR	50µm pitch	71.3	1.4
1	16	15x15x2	Paint	50µm pitch	71.3	1.4
2	25,26	20x20x2	3M ESR	50µm pitch	71.3	1.4
2	27	20x20x2	Paint	50µm pitch	71.3	1.4
2	17,29	15x15x2	3M ESR	50µm pitch	71.3	1.4
2	18	15x15x2	Paint	50µm pitch	71.3	1.4

+ a series of measurements at the centre of the scintillators in order to investigate temperature sensitivity issues ==> next few slides

Old results

Batch	Run	Size [mm ³]	Packaging	<#p.e.>	± 5 % [%]	± 10 % [%]	± 20 % [%]
1	14	20x20x2	3M ESR	31	70.5	95	100
1	13	20x20x2	Paint	11	22.9	59.5	85.4
1	15 28	15x15x2	3M ESR	50 97	83.1 90.8	99.6 100	100 100
1	16	15x15x2	Paint	21	45.3	75.1	83.6
2	25 26	20x20x2	3M ESR	77 68	77.0 77.5	95.2 94.8	100 99.8
2	27	20x20x2	Paint	15	31.5	67.0	79.5
2	17 29	15x15x2	3M ESR	67 89	68.4 92.9	91.1 100	100 100
2	18	15x15x2	Paint	25	39.6	72.0	84.4

Large non-reproducibility observed, caused by:

- SiPM-scintillator coupling ==> should not touch them between measurements

- ~ -4%/K temperature correction coefficient not enough ==> determine new one

What we learned: ESR vs. Paint

ESR¹

Relative offset from average response [%]

Relative offset from average response [%]

Paint²

Reflective foil from 3M, held by teflon tape 1)

Saint-Gobain BC-620 diffusive paint 2)

CERN

Extracting T-correction (20x20)

Procedure:

CER

- record mutiple MIP distrubtions from electron gun [left plot]
- same position (central), different temperatures
- fit each distribution with Landau-Gauss convolution
- linear fit of Landau MPV vs. T [right plot]

Extracting T-correction (20x20)

To extract temperature correction coefficient, need to define a reference temperature, we chose $T_{ref} = 22$ deg.

Results after correction

	_	15x15	tile 20x20 tile	
	7	T ₀ 22°C	C 22°C	
	(G _{SiPM} 43.5	43.5	
		$x_r -7.9\%$		
	Λ	Mean _{ph} 67	61	
		RMS_{ph} 1	2	
$T^{meas} [^{\circ}C]$	$Q^{meas}[pC]$	$Q^{corr}[pC]$	Ph ^{corr} [No.]	
25.1	5.1	6.7	66	15 x 15 mm ²
21.4	6.9	6.7	67	3M wrapping
20.8	7.4	6.8	68	
T^{meas} [°C]	$Q^{meas}[pC]$	$Q^{corr}[pC]$	Ph ^{corr} [No.]	
23.3	5.4	6.1	61	
23.1	5.5	6.1	61	20 x 20 mm ²
21	6.8	6.3	63	3M wrapping
20.8	7	6.3	62	
20	7.1	6	60	

CÉRN

Testing the correction

Applied previously determined temperature correction coefficients to full scintillator scans. Here: 20 x 20 mm² wrapped with 3M reflective foil

Summary

- A tile-scan setup has been assembled at CERN in view of performing scintillator and SiPM studies for the CLIC ECAL R&D
- Scintillator samples of various sizes have been scanned, their uniformity assessed
 - with reflective foil and paint
 - with direct SiPM coupling to side face
- MIP response is lower with paint, but much less uniform
- SiPM coupling to scintillator shows non-reproducibility issues
- Temperature correction coefficients have been extracted and applied to full scans, reproducibility OK if we do not touch the SiPM-scintillator coupling
- Next steps:
 - quantify light yield and uniformity for new batches of 10x10, 15x15, and 20x20 mm² scintillators [this summer]
 - study readout electronics for layer prototype [FCAL AGH-UST electronics, studies have started]
 - complete hardware studies with light transport simulaions in Geant4 [contributions welcome]
 - document current results as CLICdp note [ongoing]

Measurement and analysis procedures

- Measurement
 - Place selected tile in setup, coupled to the SiPM by direct contact to side face using optical grease
 - Perform self-triggered calibration run to measure gain at reference temperature
 - Switch electron gun ON, start automated tile scan with pre-selected positions
 - At each scan step (~60 sec):
 - Measure temperature (surface-mounted PT1000)
 - Record DUT SiPM waveform integral for each crossed-fibres coincidence signal
- Analysis
 - Correct each waveform integral by relative temperature offset w.r.t. calibration run
 - Convert waveform integral into #p.e.
 - Define tile area at the centre to calculate average response
 - For each scan position, compute deviation from <#p.e.>
 - Estimate effective tile areas within +/- 5, 10, and 20% of the average response to assess response non-uniformity