

Status of scintillator scans

CLICdp collaboration meeting June 11th 2014, CERN

Samir Arfaoui, Damiano Celeste

Introduction, outline

- Goal: R&D on CLIC ScECal with tiles at CERN
- Phase I: use scintillator scan setup to characterise various tile geometries, packaging, and SiPM couplings
- In this talk:
	- assess scintillator tiles response uniformity to MIPs
	- determine temperature correction coefficients
	- apply T-correction to full scans

Feedthrough to lab next door

Readout, Trigger, and DAQ

Readout

- Custom-made PCB (S. Veneziano, Rome) with amplification (\sim 10) as well as temperature monitoring with PT1000 probe. Second version in development (better PCB design, 2-stage amplification).
- DUT signal is read through USB oscilloscope (Picoscope)

Trigger

- Crossed scintillating fibers (20x1x1 mm³) as trigger, fixed underneath DUT
- Hamamatsu MPPC (50 um pitch) glued to painted fibre
- Trigger signals are put in coincidence (NIM) and signal goes to Picoscope LabVIEW DAQ
	- Software for calibration (auto-trigger) and data-taking (with eletron source)
	- Control of the step-motors for scintillator scans
	- Temperature monitoring with NI DAQ Crate

Measurements performed

Two identical batches of four scintillators. Same MPPC, same bias voltage, same electron gun current (MIPs).

+ a series of measurements at the centre of the scintillators in order to investigate temperature sensitivity issues $==>$ next few slides

Old results CÉRN

Large non-reproducibility observed, caused by:

- SiPM-scintillator coupling ==> should not touch them between measurements

- \sim -4%/K temperature correction coefficient not enough ==> determine new one

What we learned: ESR vs. Paint **ERN**

ESR1 Paint2

- 1) Reflective foil from $3M$, held by teflon tape
- 2) Saint-Gobain BC-620 diffusive paint

Extracting T-correction (20x20)

Procedure:

- record mutiple MIP distrubtions from electron gun [left plot]
- same position (central), different temperatures
- fit each distribution with Landau-Gauss convolution
- linear fit of Landau MPV vs. T [right plot]

Extracting T-correction (20x20) CERN

To extract temperature correction coefficient, need to define a reference temperature, we chose T_{ref} = 22 deg.

Results after correction

CERN

Testing the correction **ERI**

Applied previously determined temperature correction coefficients to full scintillator scans. Here: 20 x 20 mm² wrapped with 3M reflective foil

- A tile-scan setup has been assembled at CERN in view of performing scintillator and SiPM studies for the CLIC ECAL R&D
- Scintillator samples of various sizes have been scanned, their uniformity assessed
	- with reflective foil and paint
	- with direct SiPM coupling to side face
- MIP response is lower with paint, but much less uniform
- SiPM coupling to scintillator shows non-reproducibility issues
- Temperature correction coefficients have been extracted and applied to full scans, reproducibility OK if we do not touch the SiPM-scintillator coupling
- Next steps:
	- quantify light yield and uniformity for new batches of 10x10, 15x15, and 20x20 mm² scintillators [this summer]
	- study readout electronics for layer prototype [FCAL AGH-UST electronics, studies have started]
	- complete hardware studies with light transport simulaions in Geant4 [contributions welcome]
	- document current results as CLICdp note [ongoing]

Measurement and analysis procedures

- Measurement
	- Place selected tile in setup, coupled to the SiPM by direct contact to side face using optical grease
	- Perform self-triggered calibration run to measure gain at reference temperature
	- Switch electron gun ON, start automated tile scan with pre-selected positions
	- $-$ At each scan step (\sim 60 sec):
		- Measure temperature (surface-mounted PT1000)
		- Record DUT SiPM waveform integral for each crossed-fibres coincidence signal
- Analysis
	- Correct each waveform integral by relative temperature offset w.r.t. calibration run
	- $-$ Convert waveform integral into $\#p.e.$
	- Define tile area at the centre to calculate average response
	- For each scan position, compute deviation from $\lt{\#p.e.}$
	- $-$ Estimate effective tile areas within $+/-$ 5, 10, and 20% of the average response to assess response non-uniformity