

Uni Bergen: G. Eigen, A. Marinov, E. van der Kraaij, J. Zalieckas FZU Prague: J. Cvach, J. Kvasnička, I. Polák

CLICdp, CERN 11/06/2014

Gain Stabilization of SiPMs

- The gain of SiPMs depends both on bias voltage and on temperature
 Gain decreases with temperature (T) & increases with bias voltage (V)
- For stable operations, the gain needs to remain constant
 - This can be achieved for example by readjusting V_{bias}
 - Determine dV/dT from measurements of dG/dV and dG/dT
 - \rightarrow Build V_{bias} regulator that keeps gain constant (<1%) if T changes
- We measured dG/dV and dG/dT for 15 SiPMs from 3 manufacturers in a climate chamber at CERN (6 of these are not in the catalogue)
- We built V_{bias} regulator test board to show proof of principle on 4 SiPMs
- We used the results to produce the first board in industry and test it
- Work is performed in the framework of AIDA

Gain Determination

- Determine gain by fitting Gaussian functions to peaks of single pe spectra
- Define gain as
 - Distance between 1 pe &
 2 pe peaks (MPPCs)
 - Distance between pedestal 1 pe peak (CPTA, KETEK)
 - Define error on the gain as the errors of the two fitted Gaussian mean values added in quadrature

Gain vs Voltage for CPTA 857

Take samples of 50k at different T and V values

Adaptive Power Regulator

First test board prototype

- Voltage range: 10 V to 80 V
- Temperature slope: <1 to 100 mV/K</p>

Second industry-made prototype

- Voltage range: SiPM: 10 V to 130 V
 APD: 10 V to 450 V
- Delivered to CERN February 2014

Front panel

Gain after V_{bias} Adjustment for CPTA 857

- Adjust voltage continuously using V_{bias} regulator test board
- At each temperature, take 16 samples with 50k events each
- Linear fit to all data points
 offset: (6.71±0.02)×10⁵
 slope: 15±76
- Gain is uniform in 5°-40°C range
 → Deviation is < ±0.04%
- A 43 page AIDA note is completed

ain after V_{bias} Adjustment for other SiPMs

THE REST AS STATE

Voltage Temperature Relation

V(T) [V]

- For stable gain dV/dT is determined by $\frac{dV}{dT} = -\frac{\partial G(V,T)}{\partial T}$
- The partial derivatives can be expanded in form of polynomials
 - dG/dT=a+b*V+O(V²)
 - dG/dV=c+d*T+O(T²)
- If both partial derivatives are first order polynomials ->
 - For CPTA 857 we obtain

For d=0
$$\rightarrow V(T) = \frac{a}{c} + C \cdot e^{\frac{A}{c}}$$

- If the partial derivatives are constant
 V(T) is exactly linear
- For quadratic dependence V(T) has a more complicated solution
 ~ Tan{f(T)}
 G. Eigen CLICdp workshop CERN, 11/06/2014

$$V(T) = \frac{a}{c} + \left(c + d \cdot T\right)^{\frac{b}{d}} \quad (d \neq 0)$$

In the 20° -30° C range a linear model is a good approximation

Study of KETEK 12 SiPM

- We started with the analysis of the data taken with the bias voltage regulator prototype board
- We extended the temperature range from 1°C to 50°C
- We try several fitting procedures
 - Fixed-peak Gaussians: sum of Gaussians with fixed distance between peaks
 - Sum of Gaussians with 1.5σ range between 2 p.e & 1. pe. peaks
 - Sum of Gaussians with full range between 2 p.e & 1. pe. peaks
 - Sum of Gaussians with 1.5 range between 1 p.e peak & pedestal
 - Sum of Gaussians with full range between 1 p.e peak & pedestal

160

Run Overview

- Compare fixed-distance peaks to full-range fit of 1 p.e. and pedestal
- Fixed-peak fits yield slightly higher gains

- Compare fixed-distance peaks to full-range fit of 2 p.e. and 1 p.e. peaks
- Fixed-peak fits yield lower gains

Gain versus Bias Voltage: Fixed-Peak

For low T, slopes are parallel and spread of individual fits is small
 For high T, preamplifier probably did not perform properly

Gain versus Bias Voltage: Full Range 1-0 p.e.

Slopes are also parallel, but spread of individual fits increases

Gain versus Bias Voltage: 1.5 σ Range 1-0 p.e.

For low T, slopes of individual fits are parallel, larger spread

Gain versus Bias Voltage:Full Range 2-1 p.e.

For low T, slopes are parallel spread of individual fits is larger

Gain versus Bias Voltage1.50 Range 2-1 p.e

For low T, slopes are parallel spread of individual fits is largest

Gain versus Temperature

• Use fixed-peak method to determine temperature dependence

G. Eigen CLICdp workshop CERN, 11/06/2014

Preliminary Results with New Board

- Gain after bias voltage readjustment for KETEK SiPM 12
- There seems to be a slope up to 20°C? It also drops above 30°C
 is this real or is it an analysis bias?
- Fixed-peak method is more robust than 1.5σ fits for 1 p.e. pedestal & 2 p.e. 1 p.e. peaks

Conclusion

- For studies with the first bias voltage regulator board, the gain stabilization works very well
 For all four tested SiPMs, gain stability is < 1% as required
- We are analyzing the gain stabilization of 5 SiPMs with the new bias voltage regulator board prototype
 See problems at higher temperatures >35°C (preamplifier issue?)
 - gain also seems to drop at lower temperature (light had to be increased, longer signals, too short integration)
- Fixed-peak fit seem to have smaller variations → more stable? Need to understand and fix misfits
- Distance between pedestal 1 p.e. is smaller than that between 2 p.e.
 & 1 p.e.
- The V(T) dependence has an analytical solution
 presently a linear dependence is implemented on the board
 new studies may suggest that a power law may be needed
 G. Eigen CLICdp workshop CERN, 11/06/2014

Next Steps

- Complete analysis of our latest runs with 5 SiPMs using the new bias voltage regulator prototype
- Check the preamp performance
- Results may require a modification of the regulator board to allow for power-law corrections
- This may require another test at CERN in climate chamber
- Modify an HBU implemented in the new AHCAL prototype
 This may proceed in 2 steps (analog and digital separately)

Backup Slides

SiPM Test Setup

- We work in a climate chamber at CERN that is accurate to 0.2° C
- Use digital oscilloscope read out by PC, low voltage & bias voltage power supplies
- Use pulse generator for LED signal
- Shine blue LED light on detectors

G. Eigen CLICdp workshop CERN, 11/06/2014

SiPM + preamp +T sensor + LED22

Temperature Measurement

Use 3 pt 1000 sensors
Near SiPM, inside/outside black box
Use LM35 sensor to measure T to

perform gain correction

 Vary T from 5°C to 40°C in 5°C steps except in 20°-30°C range use 2°C steps
 → T_{SIPM}~T_{SET}+0.4°C,

SiPM Detectors Tested

We measured the dG/dT & dG/dV dependence for 15 SiPMs from 3

manufacturers

- We tested the V_{bias} adjustment on 4 SiPMs:
 CPTA 857
 CPTA 1677
 KETEK W 12
 - Hamamatsu
 11759

• Note that CPTA sensors were attached to 3×3 cm² scintillator tiles while the other sensors were directly illuminated by blue LED

Manufacturer	Sensitive	Pixel	#	Nominal	Typical	Serial #
and Type #	area	pitch	pixels	V _{bias}	G	
	$[\mathrm{mm}^2]$	[µ m]		[V]	$\times [10^{5}]$	
Hamamatsu						
S10943-8584(X)	1×1	50	400	71.69	7.49	11759 🚽
S10943-8584(X)	1×1	50	400	71.57	7.49	11766
S10943-8584(X)	1×1	50	400	71.50	7.48	11770
S10943-8584(X)	1×1	50	400	71.33	7.48	11771
Sample A	1×1	20	2500	66.7	2.3	A1
Sample B	1×1	20	2500	73.3	2.3	B 1
Sample A	1×1	15	4440	67.2	2.0	A2
Sample B	1×1	15	4440	74.0	2.0	B2
СРТА						
	1×1	40	796	33.4	7.1	857
	1×1	40	796	33.1	6.3	922
	1×1	40	796	33.3	6.3	975
	1×1	40	796	33.1	7.0	1065
	1×1	40	796	33.3	14.6	1677
KETEK						
MP15 V6	$2 \times (1.2 \times 1.2)$	15	4384	28	3.0	W8
MP20 V4	3×3	20	12100	28	6.0	W12

Summary of dV/dT Measurements

- V_{bias} for Hamamatsu is ~70 V while V_{bias} for CPTA is ~33 V & V_{bias} for KETEK is ~28 V
- For KETEK and CPTA, dV/dT is ~15-20 mV/K for Hamamatsu, dV/dT is ~55 mV/K
- Thus, compensation will be simpler for CPTA and KETEK detectors
- 0 [Y//w_-10 LP//Ap 0 KETEK CPTA -30 -40 Hamamatsu -50 -60 -70 60 30 50 70 40 80 20 SiPM V bias
- We tested the compensation
 on four detectors so far, including samples from all manufacturers

Known Fit Problems

