Trigger and Displaced Vertexing

the CDF Silicon Vertex Tracker
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Motivation

e SVT: hardware for high resolution tracking at
early trigger stages

e Use cases:

— Need for fast pattern recognition on large

amounts of data:

— Fine detector segmentation
— High-occupancy

— Heavy flavor physics (b, c)

— New physics coupled to 3" family (e.g. H=bb, tt
etc.)



Pattern recognition hunger

#Si Readout *HEP experiments evolve to
elements finer and finer segmentation
CDE Run | 46K *Higher occupancy
*Larger event rate
CDF Run i 720K *Reading out and processing these large amounts
ATLAS >80M of data often becomes unpractical

*SVT is a dedicated hardware processor
*Its philosophy can be applied to many
pattern recognition problems:
*Tracking in mixed detector types (Si,
straws, wires, GEM ...)
*Matching to other subdetectors
(muons, PID, calo...)

A flexible tool to distill RAW information
into decision-friendly (higher level) items




Heavy Flavor Physics with the SVT
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Heavy Flavor Physics
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T(B*) = 1.661+0.027+0.013 ps

Heavy Flavor Physics

Control
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These results would not have been possible without the SVT!

measurements
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New Physics: LHC
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How does the SVT work?



SVT within the CDF DAQ

The CDF Trigger

~2.7 MHz Crossing rate
396 ns clock

Level 1 Levell
¢2.7 MHz Synch. Pipeline
storage 5544 nsLatency
pipeline: *~20 KHzaccept rate

42 clock

COT dy, @, P,

cycles
Goals:
*Offline-like track parameters (IP in
particular)
s *In Real time, as early as possible within DAQ
I:eXse\I/:ch. 2 Stage Pipeline constraints

*~20 ps Latency
©250 Hz accept rate

Keys to sufficient speed and accuracy:
*Combine L1 COT “tracks” (Pt,®) with Silicon
3 Farm detector information

*Drop stereo information

*Parallelize tasks in hardware

DAQ
buffers

Mass Storage (30-50 Hz)



The SVT Algorithm

How do we measure tracks in ~20 ps/event, when
software takes typically ~1s?

Naively going through the combinatorial for N hits on M
layers: “NM, optimizing we can make this almost linear!

» (1) Do everything you can in parallel and in a pipeline

» (2) Streamlined pattern recognition
B Bin coordinate information coarsely into roads
B Examine all possible patterns in parallel (of course)
B Thisis done in a custom chip

» (3) Linearize the fitting problem ,
The wisest are the

B i.e. solvable with matrix arithmetic most annoyed by the
loss of time. -Dante



(1) Symmetry & Parallelism

Symmetric, modular geometry
of silicon vertex detector lends

itself to parallel processing

Note “wedge” symmetry



res parallelism
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SVT data volume requi
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Reduces gigabytes/second to megabytes/second

Peak (avg): 20 (0.5) GB/s ———» 100 (1.5) MB/s



“Assembly line”

ADC counts

Fitted tracks:
P = (C; (l); d; XZ)
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(£) STreamiinea pattern
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The way we find tracks is a cross

between

» searching predefined roads

» playing BINGO

Time ~ A*N, .. + B*N

matchedroads

Road # 1 2 3 4 5
B I N G O
2 17 35 | 48 | 61
10 21 39 | 53 | 66
14 20 |free| 55 @ 65
8 | 25 41 52 | 62
6 16 37 | 46 | 67
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Associative memories: Our Bingo Cards
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How many “bingo cards” do we need?

Two main parameters An example from the ATLAS /FTK proposals:

affect this:
*Track finding efficiency Efficiency vs number of patterns
*Pattern occupancy ﬁ LS : : :

0.9 f— @® 1mmPixel 3mm SCT

0.8 :_ 2mm Pixel 5mm SCT

*Coarser detector binning: = | 5
el ess patterns for the 0-75_ * 5mmPier1:DmmSGT """" """""""""""""""""" """""""""""
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*CDFII: 32k (=»512k)/wedge # Patterns




(3) Linearization

6 coordinates: x4, Xo, X3, X4, X5 (P1), Xg ()

3 parameters to fit: Py, ¢, d X3

3 dimensional surface
3 constraints in 6 dimensional space

tangent plane:

&
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track parameters:
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Linear approximation is so good that a single set of constants
is sufficient for a whole detector wedge ( 30° in ¢ )




How good is Linearization?

For a circle tangent to the x axis,
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Y= Clih d(l + Cd)_ O — os L the linear fit has the obvious 3
14 2¢d ST .. E . consequence that a sine wave " |
_ _ 4 c ' ., becomes piecewise linear E
Including ¢ # 0 and using |ed| < 107, = o 7 g E
T + o | ; =
7 i z
cr? : d N g o | 3
Y = +rsing + —. = E
o - m . K =
COS ¢ COSQ $ & .. ;
Silicon: constant x, not constant r: - s L R E
C 9 d B T T
= T° + x tan @+ : :
9= oo & ¢ el N Azimuth (0 )
= L _ am And the tan(phi)-phi structure for each
(1) Fit is linear in tan(¢), not ¢ [ wedge is also easy to see
n _ il
(2) up to 3.5% scale error on d: o u[_ﬁ_‘_.’ '.'IF‘!HF g :pﬂ'll.:u;." il 1
o "
3.5 pm at 100 pm (at 15°) o aml :
v Silicon layers 0:0 1 2 3' 4 5 ﬁ

track 0




SVT Deployment

Some features enormously simplified the SVT
installation:

 Modularity (e.g. uniform standard in data paths)

* |Intrinsic diagnostic tools: each input, and critical
registers are VME-accessible without affecting
dataflow

* Detailed emulation of the hardware: we can
reproduce the SVT output in the CDF analysis
framework with discrepancies <10~



Success!
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Improvements & Upgrades



Scaling to LHC-class complexity

1998: Full custom VLSI

. (]
Not ca>y: “Associative Memory”
— 500K channels — O(100M) chip:
— 20Us—2us

— 0O(107) patterns needed
e But feasible:

128

patterns

— SVT has been designed in ~1990 with

(at the time) state of the art technology | 2004: Standard Cell

— We have been thinking a lot on how to “Associative Memory”
' chip:
improve the technology

— The SVT ‘upgrade’ (2005) is in fact
partly done with hardware capable of ~5000
LHC-class performance!

patterns




Beyond track parameters

The SVT architecture is extremely modular

With little interfacing, any detector can in principle be
used as reconstruction seed:

— Muon detectors

— Calorimetry

What possibilities does this open at trigger level?

Further abstraction level: use multiple layers of pattern
recognition hardware

e “Successive approximation” pattern recognition

e Pattern recognition beyond tracks:
— Vertices?
— Topological triggers?



Conclusions

e SVT provides a very powerful real-time general-
purpose “funnel”

— Can handle mixed detectors

— Pattern recognition core can be used in an
hierarchical fashion to derive objects of increased
complexity

e Critical design parameters:

— Detector:
* Geometry
* Segmentation
e Readout characteristics

— Environment:
* Occupancy
* Physics case



