

the CDF Silicon Vertex Tracker

Alessandro Cerri CERN

Outline

- Motivation
- What is the SVT?
- How does the SVT work?
- Performances and future developments

Motivation

- SVT: hardware for high resolution tracking at early trigger stages
- Use cases:
 - Need for fast pattern recognition on large amounts of data:
 - Fine detector segmentation
 - High-occupancy
 - Heavy flavor physics (b, c)
 - New physics coupled to 3rd family (e.g. H→bb, ττ etc.)

Pattern recognition hunger

Experiment	#Si Readout elements
CDF Run I	46K
CDF Run II	720K
ATLAS	>80M

- •HEP experiments evolve to
 - •finer and finer segmentation
 - Higher occupancy
 - Larger event rate
- Reading out and processing these large amounts of data often becomes unpractical
- •SVT is a dedicated hardware processor
- •Its philosophy can be applied to many pattern recognition problems:
 - •Tracking in mixed detector types (Si, straws, wires, GEM ...)
 - •Matching to other subdetectors (muons, PID, calo...)

A flexible tool to distill RAW information into decision-friendly (higher level) items

Heavy Flavor Physics with the SVT

Heavy Flavor Physics

First-time measurement of many B_s and Λ_h **Branching Fractions**

$$\frac{f_s}{f_d} \cdot \frac{Br(B_s \to D_s^- \pi^+)}{Br(B^0 \to D^- \pi^+)} = 0.35 \pm 0.05 (stat) \pm 0.04 (syst) \pm 0.09 (BR)$$

5.4

5.6

5.8

m_o [GeV/c²]

5.2

 $BR(B_s \to \phi\phi) = (1.4 \pm 0.6(stat.) \pm 0.2(syst.) \pm 0.5(BR's)) \cdot 10^{-5}$ 5.0 Hep-ex/0502044 $D_{s}^{T}\pi^{+}$ Mass [GeV/c²]

CDF Run II Preliminary, L = 119 pb -1

$$\frac{\text{Br}(B_s \to \psi(2S)\phi)}{\text{Br}(B_s \to J/\psi\phi)} = 0.52 \pm 0.13[\text{stat}] \pm 0.06[BR] \pm 0.04[\text{sys}]$$

http://www-cdf.fnal.gov/physics/new/bottom/050310.blessed-dsd/

$$\frac{Br(B^0 \to D_s^+ D^-)}{Br(B^0 \to D^- 3\pi)} = 2.00 \pm 0.16(NC) \pm 0.12(syst) \pm 0.50(BR)$$

http://www-cdf.fnal.gov/physics/new/bottom/050310.blessed-dsd/

$$\frac{BR(\Lambda_b \to \Lambda_c^+ \pi^-)}{BR(\bar{B}^0 \to D^+ \pi^-)} = 3.3 \pm 0.3 \; (\mathrm{stat}) \pm 0.4 \; (\mathrm{syst}) \pm 1.1 \; (\mathrm{BR+FR})$$

$$rac{\mathcal{B}(\Lambda_b o \Lambda_c^+ \mu^- \overline{
u}_\mu)}{\mathcal{B}(\Lambda_b o \Lambda_c^+ \pi^-)} = 20.0 \pm 3.0 \; (stat) \pm 1.2 \; (syst) {+0.7 \atop -2.1} \; (BR) \pm 0.5 \; (UBR)$$

Heavy Flavor Physics

ATLAS TDR-016

New Physics: LHC

bbH/A bbbb

ttqqqq5bb

ttHqqqq-bbbb

H/A ttqqqq-bb

Hhhbbb

H⁺⁻ tbggbb

Fast-Track brings offline btag performances early in LVL2

You can do things 1 order of magnitude better

SVT within the CDF DAQ

The CDF Trigger

The SVT Algorithm

How do we measure tracks in ~20 µs/event, when software takes typically ~1s?

Naively going through the combinatorial for N hits on M layers: ~N^M, optimizing we can make this almost linear!

- > (1) Do everything you can in parallel and in a pipeline
- > (2) Streamlined pattern recognition
 - Bin coordinate information coarsely into roads
 - Examine all possible patterns in parallel (of course)
 - This is done in a custom chip
- > (3) Linearize the fitting problem
 - i.e. solvable with matrix arithmetic

The wisest are the most annoyed by the loss of time. -Dante

(1) Symmetry & Parallelism

Symmetric, modular geometry of silicon vertex detector lends itself to parallel processing

2003-04-14

Bill, U. Chicago

2 meters

SVT data volume requires parallelism

Reduces gigabytes/second to megabytes/second

Peak (avg): 20 (0.5) GB/s ——→ 100 (1.5) MB/s "Assembly line"

(2) Streamlined pattern

The way we find tracks is a cross between

- > searching predefined roads
- playing BINGO

Time ~ A*N_{hits} + B*N_{matchedroads}

I	N	G	0
17	35	48	61
21	39	53	66
20	free	55	65
25	41	52	62
16	37	46	67
	21 20 25	17 35 21 39 20 free 25 41	17 35 48 21 39 53 20 free 55 25 41 52

Associative memories: Our Bingo Cards

How many "bingo cards" do we need?

Two main parameters affect this:

- Track finding efficiency
- Pattern occupancy
- Coarser detector binning:
 - •Less patterns for the same efficiency
 - •More occupancy perpattern
- •A compromise needs to be found based on the specific application
- •CDFII: 32k (→512k)/wedge

An example from the ATLAS /FTK proposals:

(3) Linearization

3 parameters to fit: $\,P_{T}\,,\,\varphi\,,\,d$

3 constraints

tangent plane:

$$\sum_{1}^{6} a_{i} x_{i} = b$$

track parameters:

$$d \approx c_0 + \sum_{i=1}^{6} c_i \, x_i$$

хЗ 3 dimensional surface in 6 dimensional space

Linear approximation is so good that a single set of constants is sufficient for a whole detector wedge (30° in φ)

How good is Linearization?

For a circle tangent to the x axis,

$$y = \frac{cr^2 + d(1 + cd)}{1 + 2cd}.$$

Including $\phi \neq 0$ and using $|cd| < 10^{-4}$,

$$y = \frac{cr^2}{\cos\phi} + r\sin\phi + \frac{d}{\cos\phi}.$$

Silicon: constant x, not constant r:

$$y = \frac{c}{\cos^3 \phi} x^2 + x \left[\tan \phi \right] + \frac{d}{\cos \phi}.$$

- (1) Fit is linear in $tan(\phi)$, not ϕ
- (2) up to 3.5% scale error on d: 3.5 μ m at 100 μ m (at 15°)

SVT Deployment

Some features enormously simplified the SVT installation:

- Modularity (e.g. uniform standard in data paths)
- Intrinsic diagnostic tools: each input, and critical registers are VME-accessible without affecting dataflow
- Detailed emulation of the hardware: we can reproduce the SVT output in the CDF analysis framework with discrepancies <10⁻⁵

Success!

Physics!

October 2001 test runs (~3 minutes at design luminosity)

TeVatron turned out to be a pretty clean, high-yield charm factory!

Improvements & Upgrades

Scaling to LHC-class complexity

Not easy:

- 500K channels \rightarrow O(100M)
- − $20\mu s\rightarrow 2\mu s$
- O(10⁷) patterns needed

But feasible:

- SVT has been designed in ~1990 with (at the time) state of the art technology
- We have been thinking a lot on how to improve the technology
- The SVT 'upgrade' (2005) is in fact partly done with hardware capable of LHC-class performance!

Beyond track parameters

- The SVT architecture is extremely modular
- With little interfacing, any detector can in principle be used as reconstruction seed:
 - Muon detectors
 - Calorimetry
 - **—** ...
- What possibilities does this open at trigger level?
- Further abstraction level: use multiple layers of pattern recognition hardware
 - "Successive approximation" pattern recognition
 - Pattern recognition beyond tracks:
 - Vertices?
 - Topological triggers?

Conclusions

- SVT provides a very powerful real-time generalpurpose "funnel"
 - Can handle mixed detectors
 - Pattern recognition core can be used in an hierarchical fashion to derive objects of increased complexity
- Critical design parameters:
 - Detector:
 - Geometry
 - Segmentation
 - Readout characteristics
 - Environment:
 - Occupancy
 - Physics case