

Single Leptoquark Production in pp

Theodora D. Papadopoulou NTU Athens

1rst ECFA-CERN-LHeC Workshop September 1-3 / 2008

Outline

- > About theoretical motivation on LQ studies
- > Pair and LQ production at LHC
- > Comparison of Single and Pair LQ aspects
- > Single LQ studies at LHC
- > Preliminary results
- **Outlook**
- > As an Epilogue

Theoretical Motivation

- appear in many unification theories beyond the SM (GUT, Compositeness, TC, Superstring theories- E_6)
- Color-triplet bosons with Couplings to quarks and leptons
- Scalars (S) and Vectors (V) ; F=0 $(e^{-1}\bar{q})$ and F=2 $(e^{-1}q)$ F=3 B + L
- Only family diagonal Couplings (to avoid FCNC processes) — LFV also considered (HERA)
- Chirality conserving LQ (Very strong bounds from rare decays)

```
\implies 14 species (7 Scalars and 7 Vectors)
```

(BRW effective model: 6 isospin singlets, 6 doublets and 2 triplets)

 Pati-Salam LQ LQ Search for $B_s \to e \mu$ decay $({
m CDF}: M_{LQ}(B_s) > 19.3 \; {
m TeV} \; {
m at} \; 95 \; \% \; {
m CL} \;)$ s μ(e)

e (µ)

b

BRW model

Buchmuller, Rückl, Wyler (BRW) model (1987)

- Assumptions:
 - LQs only couple to quarks, leptons and gauge bosons (with dimensionless couplings)
 - LQ interactions invariant under SM gauge group $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$
- LQs are classified by:
 - fermion number,

$$F = 3B + L \implies F = 0, 2$$

- spin $\rightarrow J=0$ (scalar) or J=1 (vector)
- charge \rightarrow $Q_{em} = \pm 1/3, \pm 2/3, -4/3, -5/3$

- Intergenerational mixing is severely restricted by FCNC data
 LQ appear in 3 quark/lepton generations
- LQ-mediated π and K helicitysuppressed decays not observed ⇒

chiral LQ couplings to fermions

14 chiral LQ species per generation:

- 7 scalar LQs (3 singlets, 3 doublets, 1 triplet)
- 7 vector LQs (3 singlets, 3 doublets, 1 triplet)

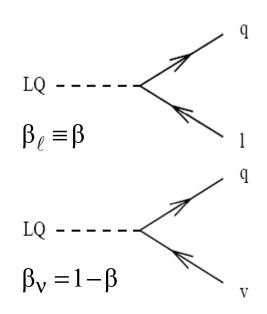
About LQ Coupling

- LQs can have:
 - spin 0 (scalar) → couplings fixed, i.e., no free parameters
 - spin 1 (vector) → anomalous magnetic (κ_G) and electric quadrupole (λ_G) model-dependent couplings
 - Yang-Mills coupling \triangleright $\kappa_G = \lambda_G = 0$
 - Minimal coupling \triangleright $\kappa_G=1, \lambda_G=0$

Resonance width

$$\Gamma \sim \lambda^2 \cdot m_{LQ}$$

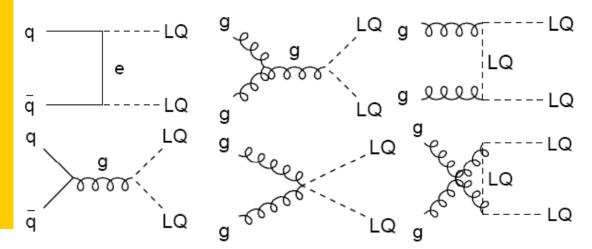
$$\frac{\lambda^2}{4\pi} = \alpha_{em}$$

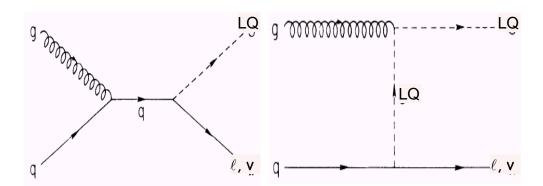

LQ species and decays

	F	spin	species
	2	0	$S_{0,L}; S_{0,R}; \tilde{S}_{0,R}; S_{1,L}$
couple to l-q, vq {	2	1	$V_{1/2,L}; V_{1/2,R}; \tilde{V}_{1/2,L}$
couple to ℓ^+q , $\bar{\nu}q$	0	0	$S_{1/2,L}; S_{1/2,R}; \tilde{S}_{1/2,L}$
couple to t q, vq	0	1	$S_{0,L}; S_{0,R}; \tilde{S}_{0,R}; S_{1,L}$ $V_{1/2,L}; V_{1/2,R}; \tilde{V}_{1/2,L}$ $S_{1/2,L}; S_{1/2,R}; \tilde{S}_{1/2,L}$ $V_{0,L}; V_{0,R}; \tilde{V}_{0,R}; V_{1,L}$

labeled by weak isospin and lepton helicities

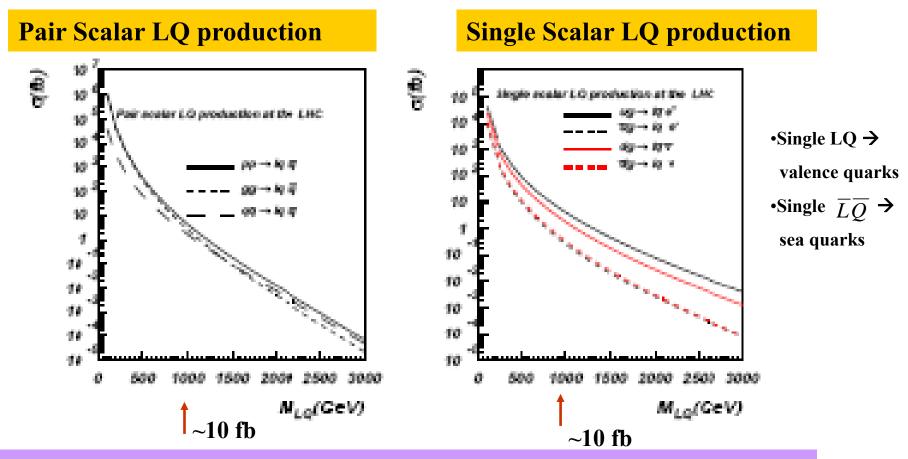
Decays:


- LQs decay to $\ell^{\pm}q$ and/or $v^{\ell}q'$ with branching ratios β_{ℓ} , $\beta_{\nu}=0$, 0.5, 1 (depending on the quantum numbers)
- Scalar LQs decay isotropically
- Vector LQs decay (1+cosθ*)²


Overview of LQ production mechanisms

LQ production at LHC

- Pair production
 - Practically independent of Yukawa coupling λ
 - Depends mainly on LQ mass



- Single production
 - strongly depends on λ
 - possible signatures:
 - $\ell^+\ell^-$ + jet
 - \(\psi \nu + \jet \)
 - vv + jet

* Both categories (Pair and Single) LQs are complementary for LHC searches

LQ cross sections at LHC

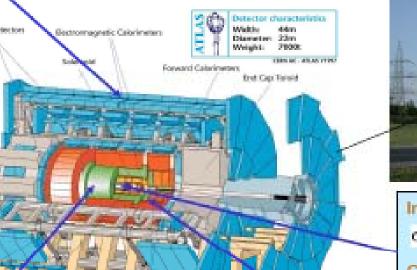
A. Belyaev, C.Leroy, R.Mehdieyev, A. Pukhov, Phys. Rev. D59 (1999) 075007

* If the LQ Coupling is of the order of α_{em} single LQ production should be combined with the studies of LQ pair production

Single LQ studies with

The ATLAS Detector

Precision Muon Spectrometer σ/pT ~ 10 % at 1 TeV/c


Fast response for trigger

Good p resolution (e.g., A/Z' $\rightarrow \mu\mu$, H -> 4 μ)

Length: ~44 m Radius: ~12 m Weight: ~ 7000 t

Fl. Channels: ~10 8

Cables: ~3000 km

Inner Detector

 $\sigma/p_{\tau} - 5 \cdot 10^{-4} p_{\tau} \oplus 0.001$

Good impact parameter res.

 $(e.g., H \rightarrow bb)$

EM Calorimeters

 $\sigma / E \sim 10\% / \sqrt{E(GeV)}$

Hudsonic Calumeters

excellent electron/photon identification

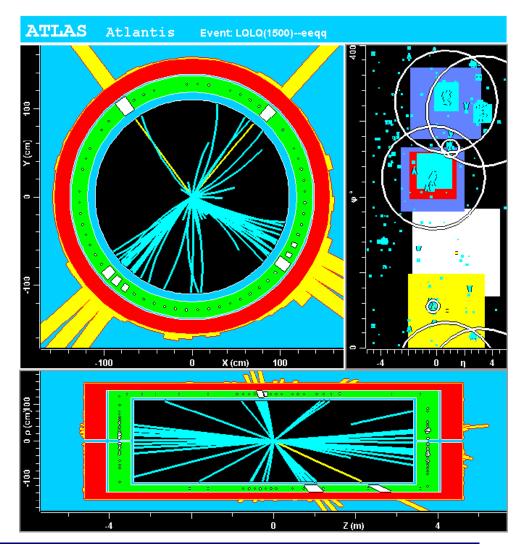
Good E resolution (e.g., H→γγ)

We will probe distances up to 10⁻¹⁹ m!

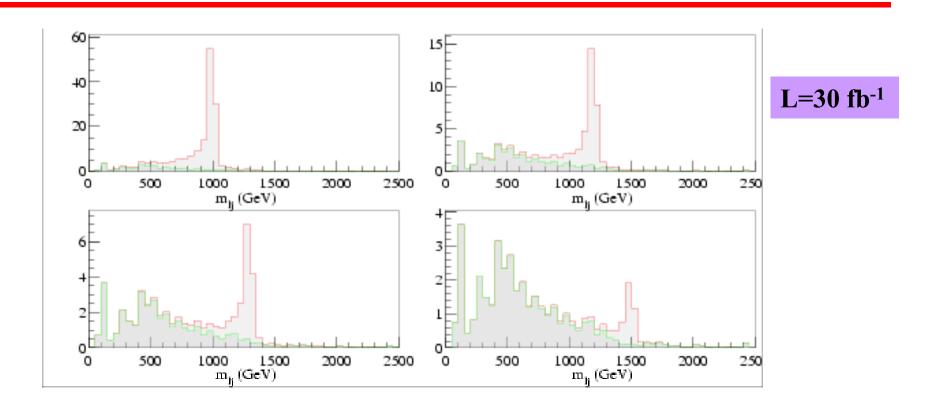
Hadron Calorimeters

Good jet and E_T miss performance

(e.g., $H \rightarrow \tau \tau$) $\sigma / E \sim 50\% / \sqrt{E(GeV)} \oplus 0.03$

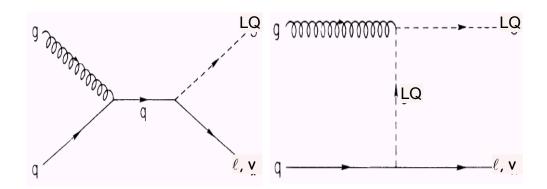

First LQ study in ATLAS

Pair LQ production -ATLAS


- Scalar leptoquarks
- PAIR Production
 - lljj channel
 - vvjj channel
 - independent of λ
- Simulation tools:
 - PYTHIA
 - $qq \rightarrow LQ LQ$
 - $gg \rightarrow LQ LQ$
 - ATLAS fast simulation (ATHENA-ATLFAST)

V.Mitsou, N.Benekos, I.Panagoulias, Th.Papadopoulou, ATL-COM-PHYS-2004-071, Cz. J. of Physics, Vol. 54(2004), Suppl. A

$LQ LQ \rightarrow e+e-qq (m_LQ=1500 GeV)$


Iljj Signal and Background

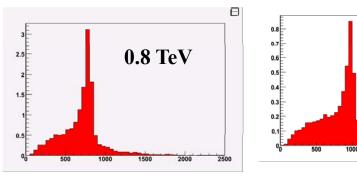
≈ Signal can be observed for MLQ \sim 1.3 TeV (5σ)

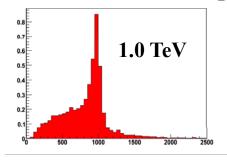
Results are presented by V.Mitsou in "Physics at LHC" Conference, Vienna 2004

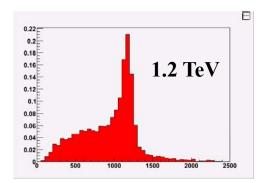
Single LQ at LHC

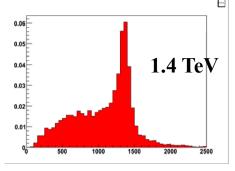
Interesting aspects!!

- ❖ it is possible to probe LQ masses greater than half of the center-of-mass-energy of the experiment (Ecm/2)
- * this process gives high PT leptons and jets (clear signal)


BUT


* the signal extraction is very difficult due to low cross-section!


Single LQ production with ATLAS


PRELIMINARY RESULTS

> reconstruction of invariant mass LQ

• ATLFAST studies 1st step

Evgenia Panagiotopoulou PhD studies-NTU Athens

(1) Study of the 2nd gen

Single LQ \rightarrow c μ

Topology: μ μ jet

and (later)

(2) Study of the 1st gen

Single LQ → u e , d e

Topology: e e jet

• Studies with fully simulated events 2nd step→

(common for all ATLAS LQ analyses)

(common for all 122 20 and good)				
Muons	Combined muons (reconstructed containing track in both inner + muon detectors)			
	Muon pT $\geq 20 \text{ GeV}$			
	Muon $ \eta \le 2.5$			
Jets	Reconstructed calorimeter towers with $\Delta R = 0.4$ cone algorithm			
	Jet pT \geq 20 GeV			
	Jet $ \eta \le 4.5$			

Individual analysis cuts

Select the 2 highest pT muons (pTmaxµ1, pTmaxµ2) and the highest pT jet (pTmaxj)

all max pTs ≥ 100 GeV for low LQmass (300, 400 GeV)

all max pTs ≥ 170, 230 GeV for high LQmass (600, 800 GeV respectively)

Cut b-jets (jets who's weight is > 4)

Invariant mass of the 2 selected muons $M_{\mu\mu} \ge 200 \text{ GeV}$

Sum of max pTs: $SPT = pTmax\mu1 + pTmax\mu2 + pTmaxj$

SPT ≥ LQmass+100 GeV for low LQmass (300, 400 GeV) SPT ≥ LQmass+200 GeV

for high LQmass (600, 800 GeV)

Single LQ Signal efficiencies

PRELIMINARY RESULTS

Single LQ	Signal efficiency			
mass (GeV)	$LQ \rightarrow u \mu$ (good statistics)	$LQ \rightarrow c \mu$ (poor statistics)		
300	13.3% ± 0.9%	$12.2\% \pm 2.1\%$		
400	$12.4\% \pm 0.4\%$	$17.5\% \pm 2.5\%$		
600	$15.2\% \pm 0.9\%$	11% ± 1.6%		
800	$15.7\% \pm 0.7\%$	10.9% ± 1.4%		

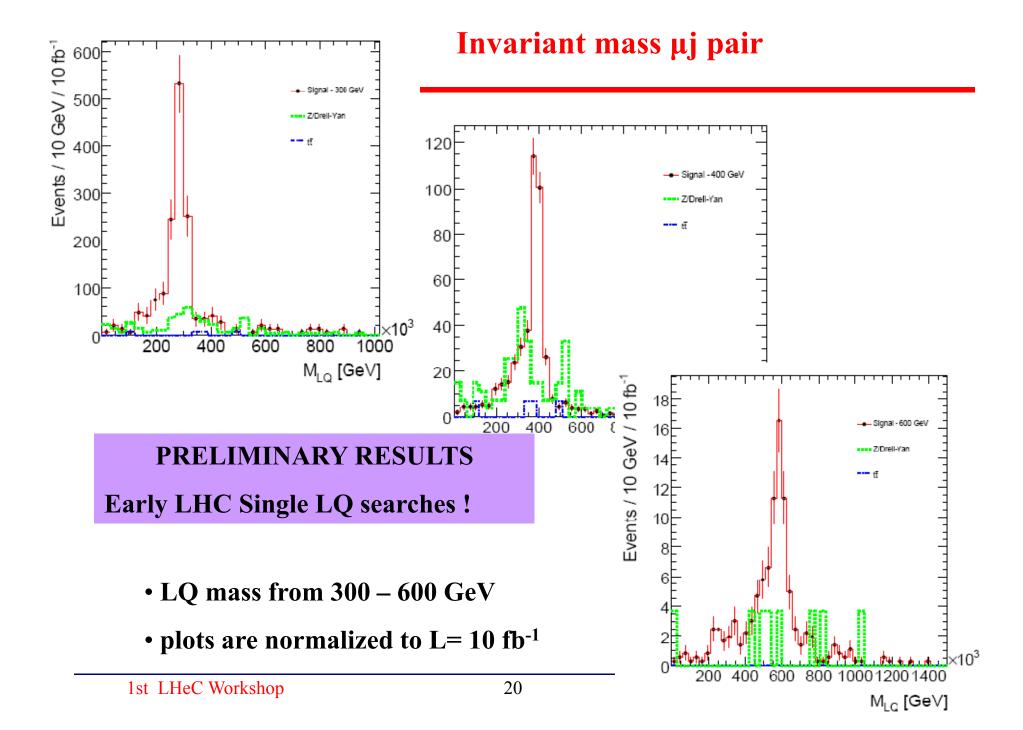
• for Single Scalar LQ (Q = -1/3)

Single LQ Discovery Luminosities

PRELIMINARY RESULTS

MLQ (GeV)	$\sigma^*\mathcal{B}$ $\mathrm{LQ} ightarrow \mathrm{u} \mu$ (pb)	Generated single LQ events	Signal events	Background events	Signal significance	5 o Discovery Expected Luminosity (fb-1)
300	1.234	1809	1153	199	45	0.71
400	0.368	7541	402	132	23	1.67
600	0.0647	2355	59	11	10	4.6
800	0.0173	3476	14	3.7	5.1	14

Cut flow for Single LQ (m=400 GeV)


PRELIMINARY RESULTS

Physics sample	Before cuts	Baseline cuts	pTmaxµ1,2 ≥ 100 GeV pTmaxj ≥ 100 GeV b-tag weight ≤ 4	SPT ≥ 500 GeV	Μμμ ≥ 200 GeV	LQ mass window (±2σ)
MLQ = 400 GeV	3680	2432	666	613	457	402
Z/DY ≥ 150 GeV	72780	33626	689	586	360	118
t tbar	420000?	86581	42	28	28	14

- Single Scalar LQ \rightarrow u μ (Q = -1/3)
- •Optimized for the smallest integrated luminosity needed for a discovery with 5σ and normalized for an integrated luminosity of $10~\text{fb}^\text{-1}$
- All other background are negligible

VERY PRELIMINARY RESULTS

Systematic error	effect on signal	effect on background	
Integrated luminosity	20% ??	20% ??	
LQ cross-section	10%	-	
High mass DY cross-section (main background)	-	1.2%	
t tbar cross-section (secondary background)	-	7.2%	
Muon identification and trigger	10%	10%	
Muon resolution	8%	8%	
Jet energy scale	6%	7%	
Jet resolution	5%	6%	
Statistical uncertainty of MC	2%	6%	
B-tagging uncertainty	10%	10%	
Quadratic sum of all uncertainties	28.8%	28.9%	

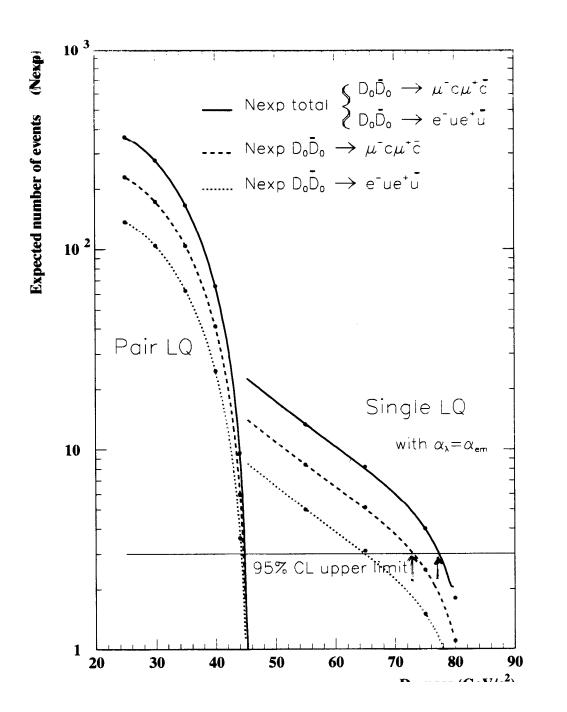
Beyond minimal LQs: SUSY quarks

• Rp can be explicitly broken by trilinear terms in the superpotential

$$W = \lambda_{ijk} L_{i}L_{j}\overline{E}_{k} + \lambda'_{ijk} L_{i}Q_{j}\overline{D}_{k} + \lambda''_{ijk} \overline{U}_{i}\overline{D}_{j}\overline{D}_{k}$$

$$\Delta L \neq 0 \qquad \Delta L \neq 0 \qquad \Delta B \neq 0$$
9 Couplings $(i \neq j)$

$$\bar{q} (\bar{l} \bar{\nu}) \qquad \bar{q} (\bar{l}$$


- o single sparticle production via a $\Delta L \neq 0$ or a $\Delta B \neq 0$ operator
- o Unstable LSP!

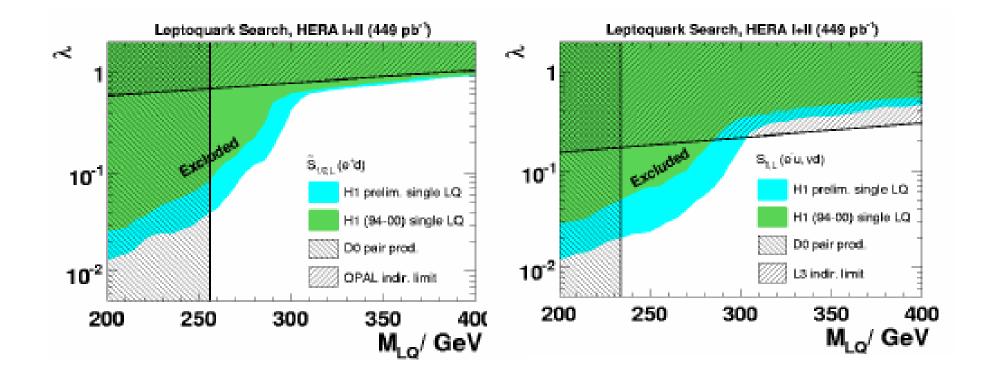
- Resonant squark production
- l +(l) + multijets
- fast proton decay is suppressed if Lepton and Baryon number Violating Couplings not simultaneously present

Outlook

- Pair and Single LQ studies at LHC are complementary
- First studies on Single LQ with ATLAS/LHC are underway towards the final results at early LHC
- Results presented are PRELIMINARY
- Use of the LHC results to predictions for the LHeC are important for the LHeC expectations on the potential of

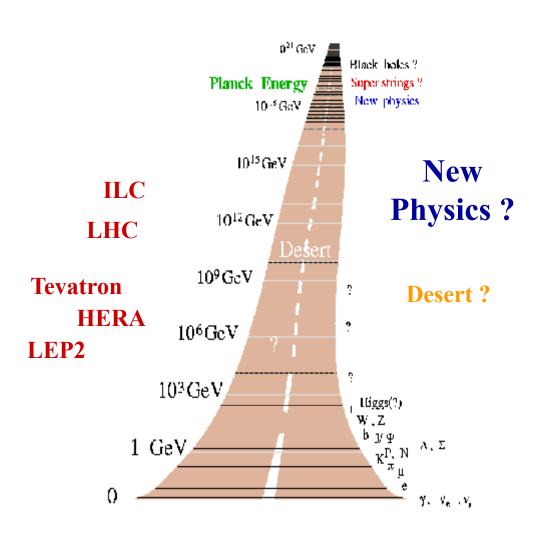
LHeC New physics

Hunting LQs (!) from


Single LQ at LEP 1

Th.Papadopoulou
DELPHI Collaboration
Phys. Lett B316 (1993)620

Th. D. Papadopoulou


LQ Exclusion Limits -- comparison with LEP and Tevatron

from I. Panagoulias' talk at DIS2008 – work on PhD / NTUA & DESY

HERA extends the exclusion region

Future Perspectives !

LHeC Collider?