Gluon Density in the Dipole Model & in the DAF-BFKL Pomeron @ HERA and LHeC & EIC

Henri Kowalski

Divonne 2nd of September 2008

Ongoing Investigation First talks at Columbia & Hampton Universities, May 2008

THE PHYSICS DEPARTMENT INVITES YOU TO A: SPECIAL EXPERIMENTAL/ THEORY SEMINAR

Dr. Henri Kowalski, DESY The DEPoneron and the LHC'

Evidence for the discrete asymptotically-free BFKL Pomeron from HERA data J. Ellis^a, H. Kowalski^b, D.A. Ross^{a,c,*}

Physics Letters B

in print

Outline of the talk:

Short review of low x HERA data, Dipole Picture, Saturation, oomph factor and all that

Why Pomeron at HERA?,

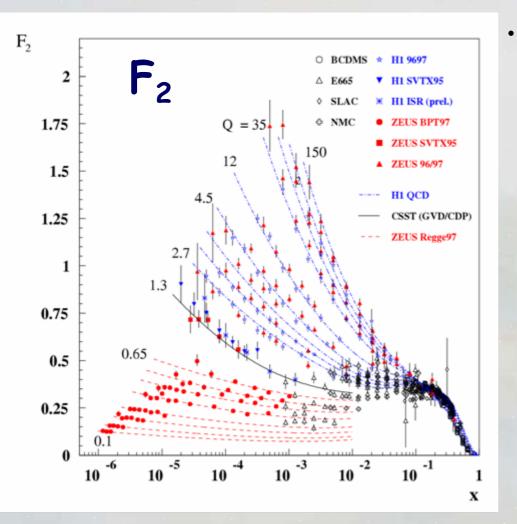
What is DAF-BFKL Pomeron Evidence for DAF-Pomeron from HERA data

Relation with DGLAP MRST ←→ EKR

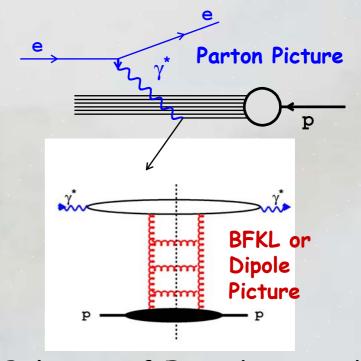
Pomeron-Graviton Correspondence

Consequences for RHIC, LHC, EIC, LHeC

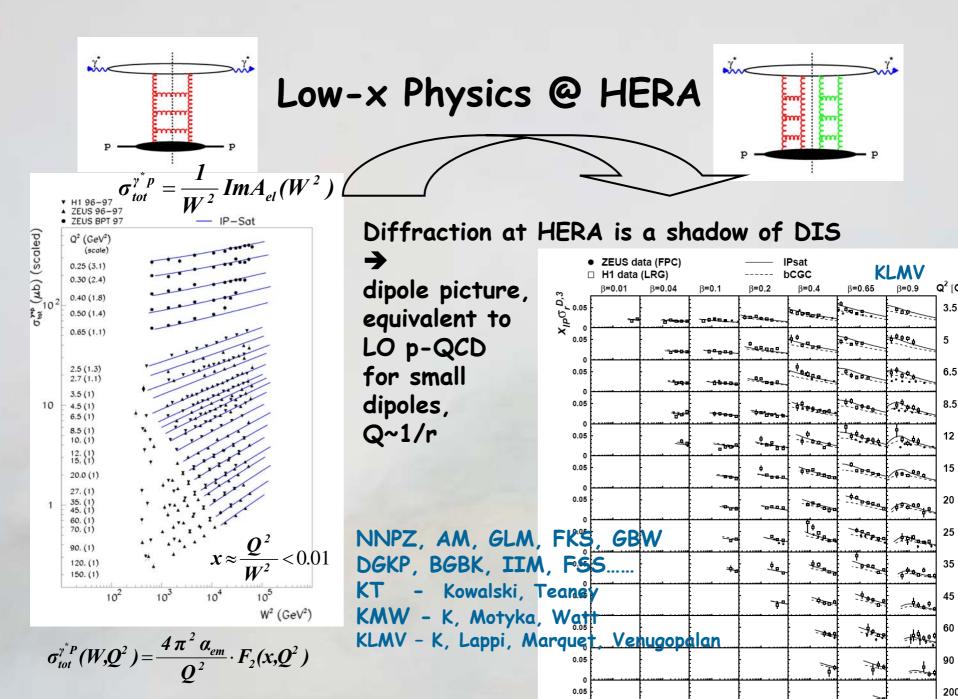
Low-x Physics @ HERA

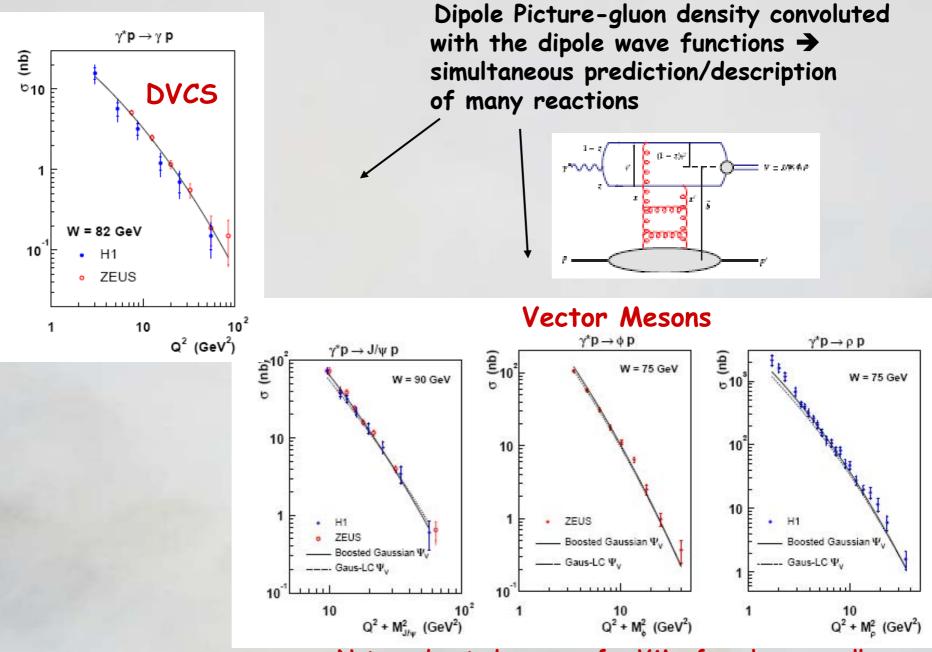


At low x and high Q^2 , steep rise in structure function

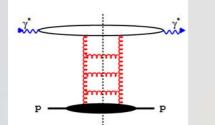


Behavior of F_2 is dominated by gluon density at small-x

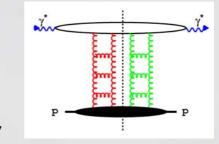




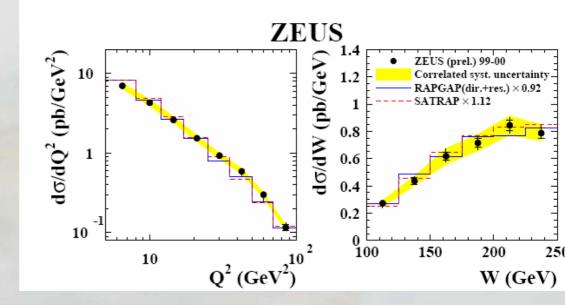
Note: educated guesses for VM wf work very well



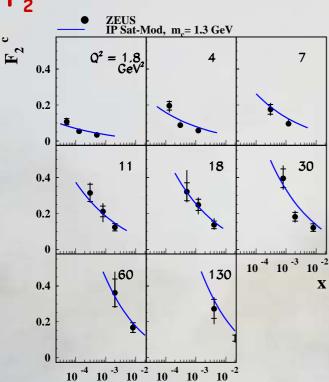
Dipole Picture-gluon density convoluted with the dipole wave functions \rightarrow simultaneous prediction/description of many reactions



Diffractive Di-jets $Q^2 > 5 GeV^2$

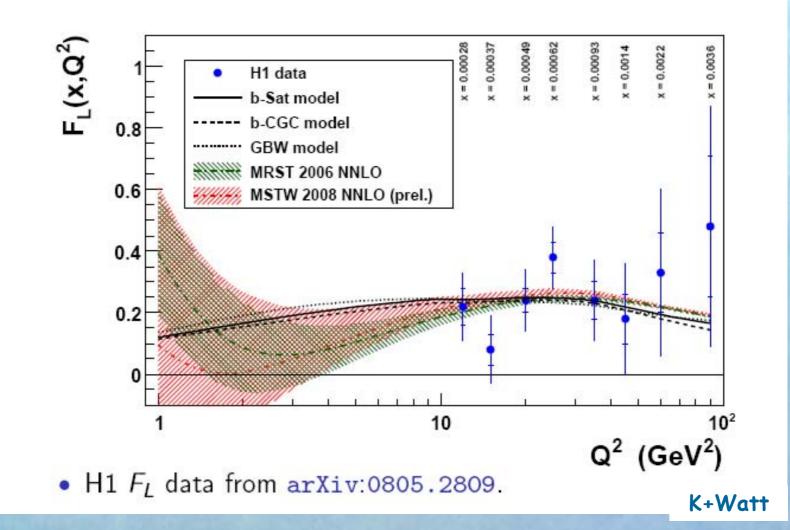


KT F_2^{C}

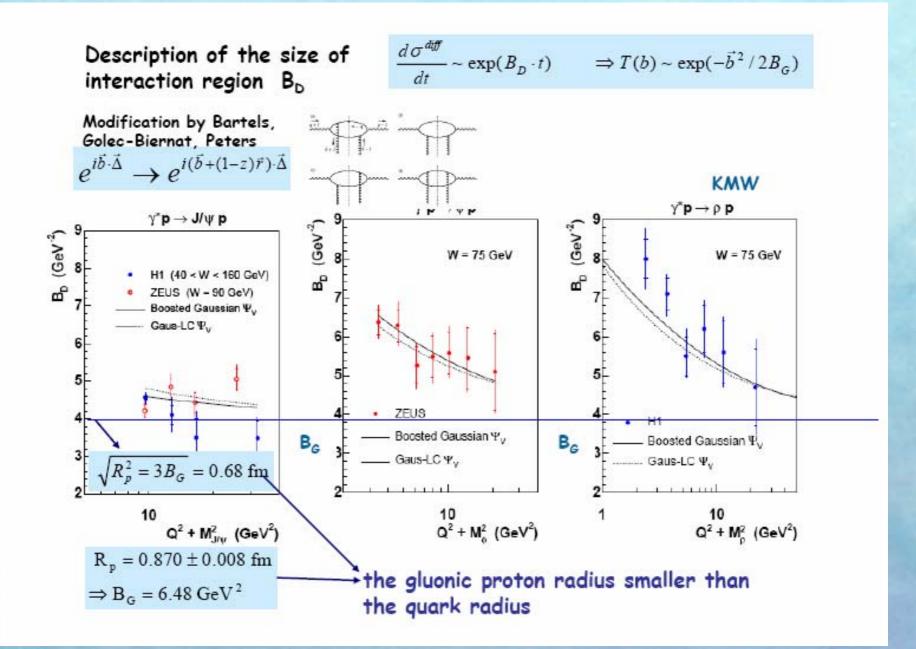


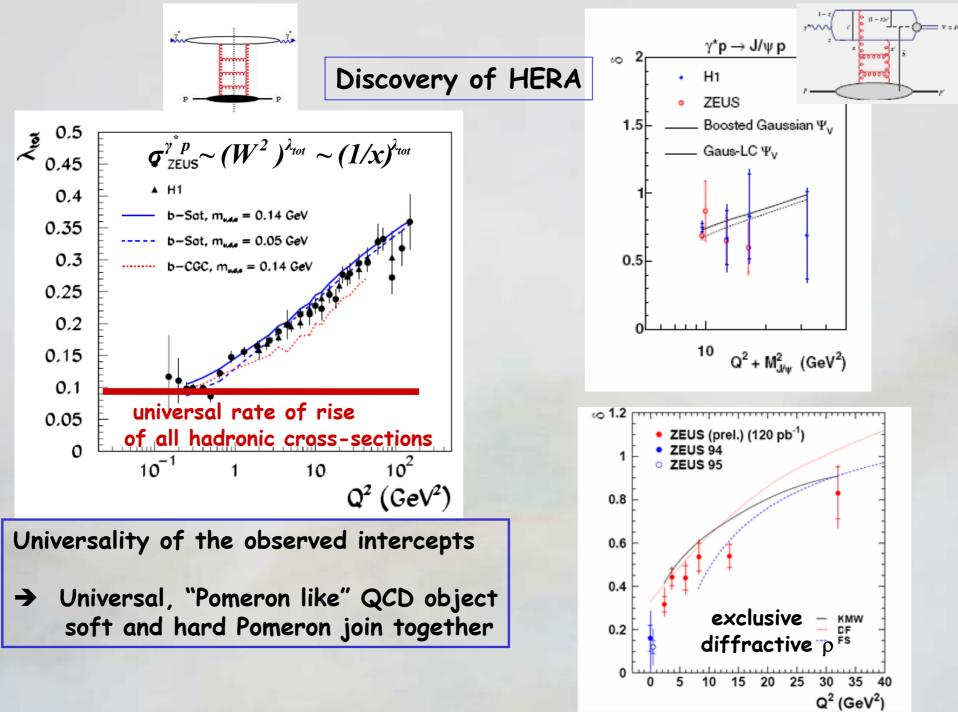
Х

Х

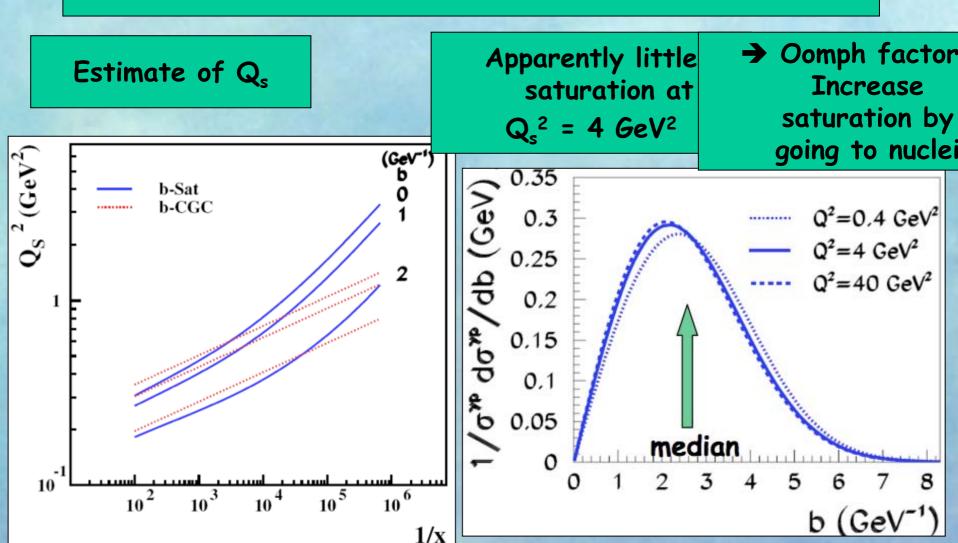


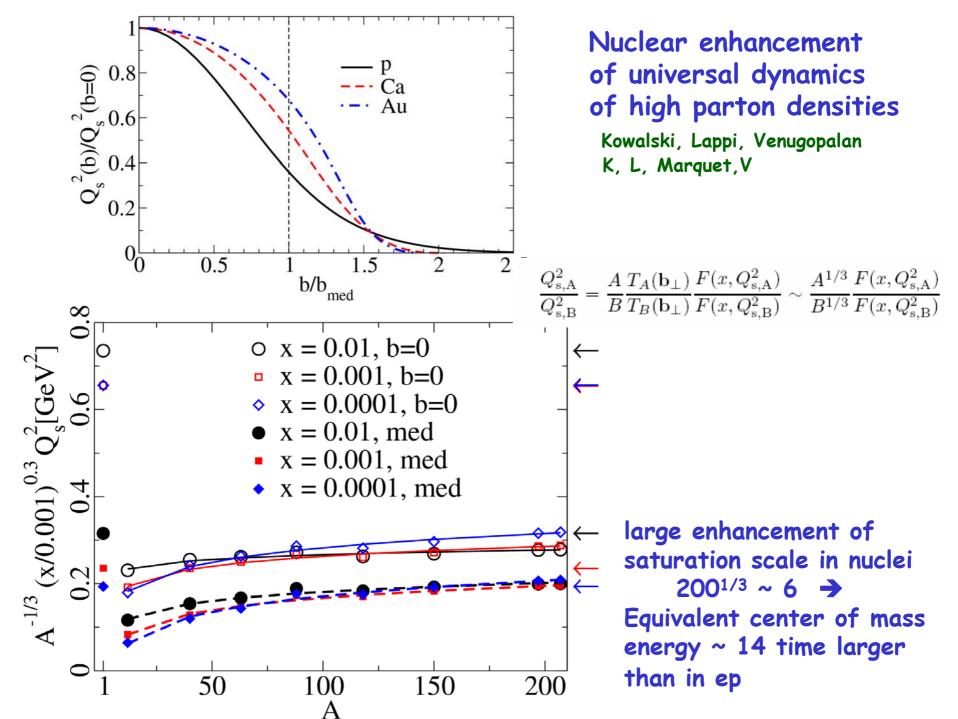
Extracting Proton Vertex using Dipole Models $\gamma^* p \xrightarrow{Q^2 = 0} J/\Psi p$ do/dt (nb/GeV²) 02 05 ZEUS 170 < W < 230 GeVe'e 70 < W < 90 GeV e⁺e⁻ 70 < W < 90 GeV $\mu^{+}\mu^{-}$ $\mu^{+}\mu^{-}$ ▲ 30 < W < 50 GeV - IP-S, T_{or}(b) $\Psi(r,z)$ ----- IP-S, T_(b) Б 3000 10 $\frac{d\sigma^{diff}}{dt} \sim \exp(B \cdot t)$ 1 Can use vector meson production to $\Rightarrow T(b) \sim \exp(-\vec{b}^2/2B)$ extract proton profile: t (GeV²) $\frac{d\sigma_{VM}^{\gamma p}}{dt} = \frac{1}{16\pi} |\int d^2 \vec{r} \int d^2 b e^{-i\vec{b}\cdot\vec{\Delta}} \int_{0}^{1} dz \Psi_{VM}^* 2\left\{1 - exp(-\frac{\Omega}{2})\right\} \Psi|^2$ KT, KMW $\Omega = \frac{\pi^2}{N_c} r^2 \alpha_s(\mu^2) x g(x,\mu^2) T(b)$ T(b)-proton shape

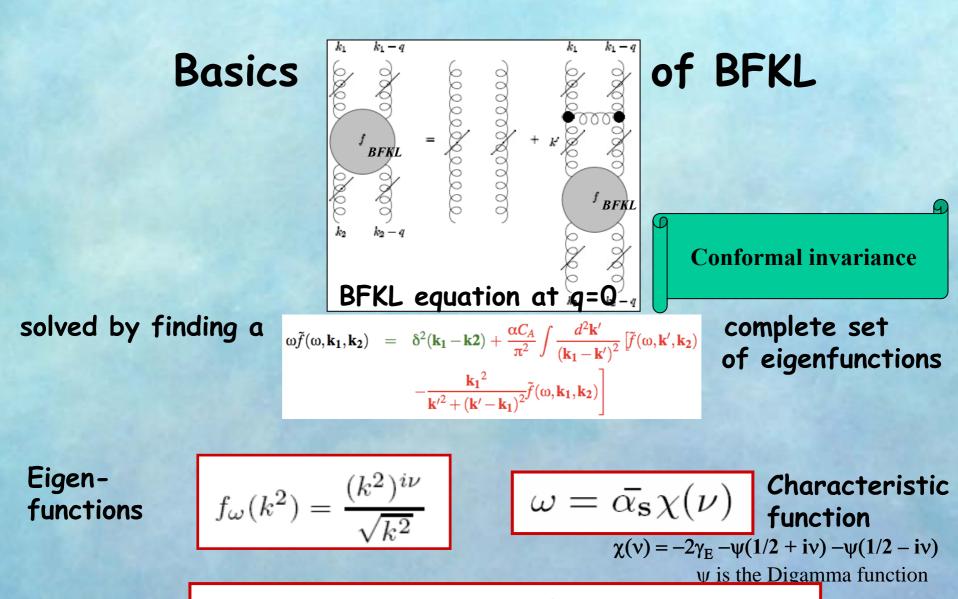




Saturation







 $f_{BFKL}(\omega, k_1, k_2) = \int_{-\infty}^{\infty} d\nu \left(\frac{k_1^2}{k_2^2}\right)^{i\nu} \frac{1}{2\pi^2 k_1 k_2} \frac{1}{(\omega - \bar{\alpha_s}\chi(\nu))}$

Green function

NLO BFKL with running α_s

NLO

$$\omega \equiv \chi(\alpha_s, \nu) = \bar{\alpha}_s (1 - A\bar{\alpha}_s) \chi_0 \left(\frac{1}{2} + \bar{\alpha}_s B + i\nu + \frac{\omega}{2}\right) + \bar{\alpha}_s^2 \chi_1(\nu).$$
Fadin, Lipatov
G. Salam
resummation

$$\omega = \chi(\alpha_s(k), \nu_\omega(k)).$$

$$\omega = \chi(\alpha_s(k_{crit}), 0).$$
property of χ :
largest ω at $\nu = 0$

largest ω at v=0

Airy functions are solving BFKL eq. around $k \sim k_{crit}$

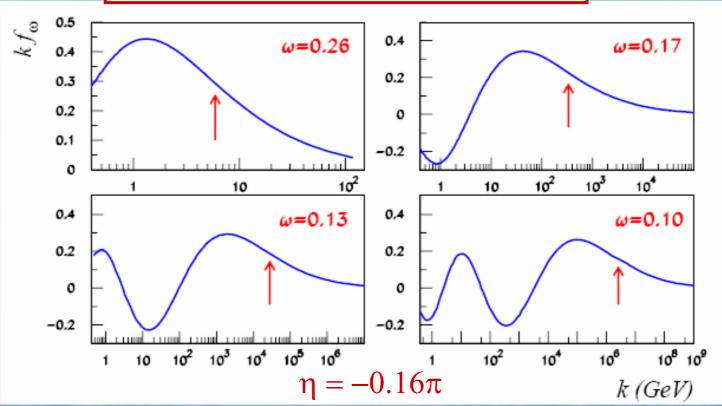
$$\left[\frac{d^2}{d\ln(k^2/k_0^2)} + \frac{\beta_0}{2\pi}\frac{\dot{\chi}(\alpha_s(k_{\rm crit}),0)}{\chi''(\alpha_s(k_{\rm crit}),0)}\ln\left(\frac{k^2}{k_0^2}\right)\right]\overline{f_{\omega}}(k) = 0,$$

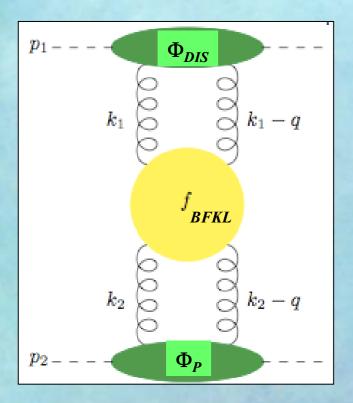
 $f_{\omega}(k^2) = \frac{\overline{f_{\omega}}(k)}{\sqrt{k^2}},$

away of
$$k_{crit}$$
 $\overline{f_{\omega}}(k) = e^{\pm i\varphi_{\omega}(k)}$, $\varphi_{\omega}(k) = 2 \int_{k}^{k_{crit}} \frac{dk'}{k'} |\nu_{\omega}(k)|$.

Matching the solutions at $k=k_{crit}$ determines the phase of oscil.= $\pi/4$ Lipatov 86 \rightarrow encode the infrared behaviour of QCD by assuming a fixed phase η at k_0

$$\varphi_{\omega}(k_0) \equiv 2 \int_{k_0}^{k_{\rm crit}} \frac{dk'}{k'} |\nu_{\omega}(k)| = \left(n - \frac{1}{4}\right) \pi + \eta,$$





 Φ_{DIS} known in QCD

 Φ_p

barely known

Structure functions in DIS

$$F_2(x, Q^2) = \int_x^1 dz \int \frac{dk}{k} \Phi_{\text{DIS}}(z, Q, k) xg\left(\frac{x}{z}, k\right),$$

unintegrated gluon density

$$xg(x,k) = \sum_{n} \int \frac{dk'}{k'} \Phi_p(k') \left(\frac{k'x}{k}\right)^{-\omega_n} k^2 f_{\omega_n}^*(k') f_{\omega_n}(k),$$

enhancement of leading eigenfun.by $(1/x)^{\circ}$

HERA

$$xg(x,k) = \sum_{n} a_n x^{-\omega_n} k^{(2+\omega_n)} f_{\omega_n}(k).$$

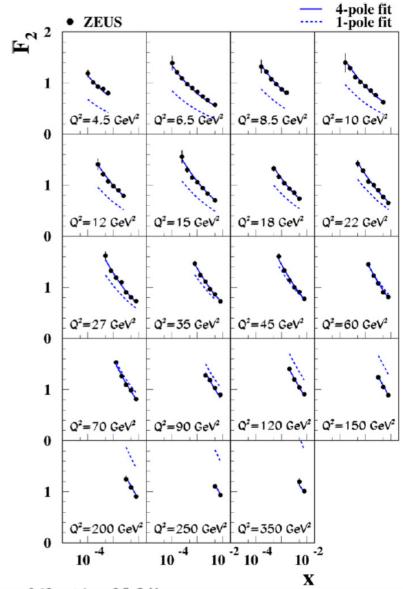
no enhancement of leading eigenfun.

$$\Phi_p(k) = \sum_n a_n k^{(2-\omega_n)} f_{\omega_n}(k),$$

Fit with charm

Correct qualitative behaviour from leading singularity

Excellent fit to data for $x < 10^{-2}$ with 4 poles



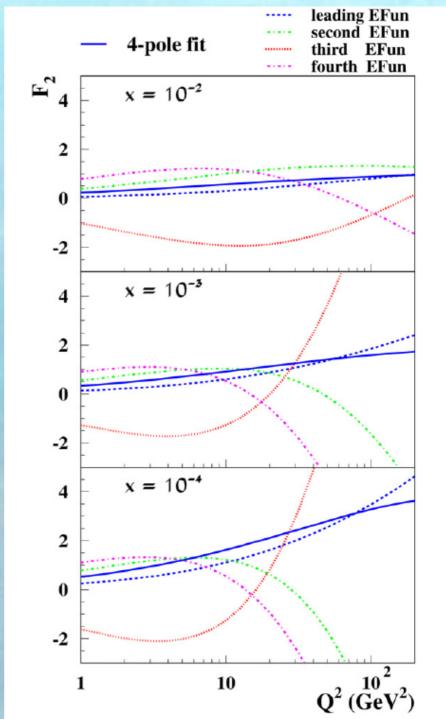
The qualities of fits using up to 4 poles, and the corresponding pole residues, assuming $\eta = -0.16\pi$ at $k_0 = 0.3$ GeV

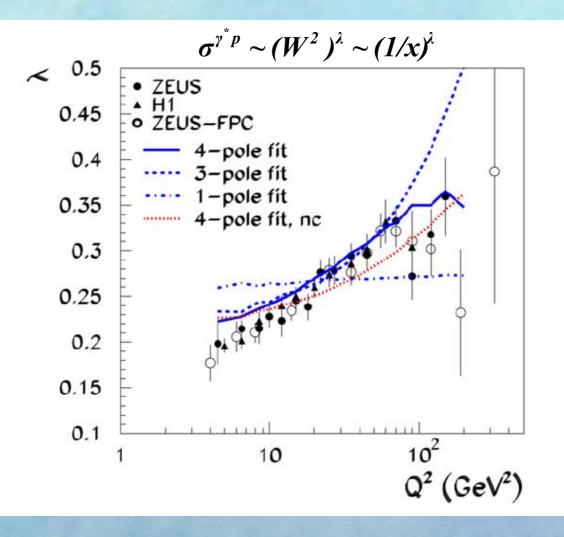
Number of poles	χ^2/N_{df}	a1	a ₂	a ₃
1	11 894/101	0.478	-	-
2	1157/100	0.566	-0.98	-
3	167/99	0.707	0.87	3.70
4	83.3/98	0.483	-6.32	-26.0

Contributions to F₂ of the individual eigenfunctions

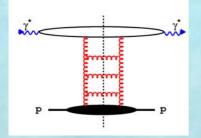
good data description due to interferences

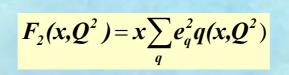
 \rightarrow phase η precisely determined

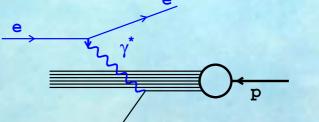




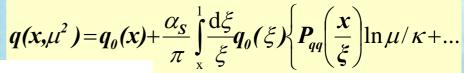
Sum of contributions with small eigenvalues can give a larger rate of rise than the leading eigenvalue !!!

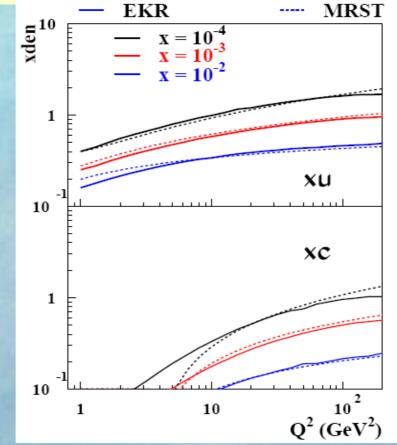






$$q(x,Q) = \int_{0}^{Q} \frac{dk}{k} \Phi_{DIS}(Q,k) x g(x,k)$$





Where Do BFKL and DGLAP Meet

Lipatov, private communication

Unintegrated BFKL gluon density (LO, no running α_s)

$$xg(x,k^{2}) = \int d\gamma \Phi_{p}(\gamma) \left(\frac{k^{2}}{\mu^{2}}\right)^{\gamma} x^{-\bar{\alpha_{s}}\chi(\gamma)} = \int d\gamma \Phi_{p}(\gamma) \exp(F(\gamma))$$

$$\gamma = \frac{1}{2} + i\nu$$
Saddle point
$$(F(\gamma))' = (\gamma \ln(k^{2}/\mu^{2}) + \bar{\alpha_{s}} \ln(1/x)\chi(\gamma))' = 0$$

$$\chi(\gamma) = \frac{1}{\gamma} - 2\zeta(3)\gamma^{2} + \cdots$$

$$\gamma^{2} = \frac{\bar{\alpha} \ln(1/x)}{\ln(k^{2}/\mu^{2})}$$

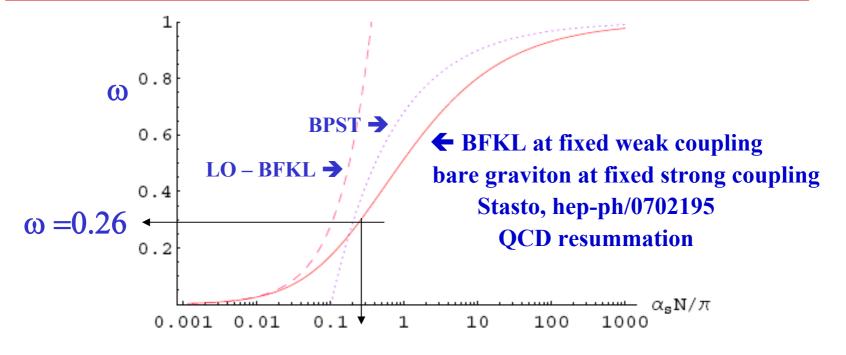
$$\omega \approx \bar{\alpha_{s}}/\gamma = \sqrt{\frac{\bar{\alpha_{s}} \ln(k^{2}/\mu^{2})}{\ln(1/x)}}$$
valid if
$$\bar{\alpha}(k^{2}) \ln(1/x) \ll 1$$
Inot fulfilled for HERA or even Higgs at LHC 1

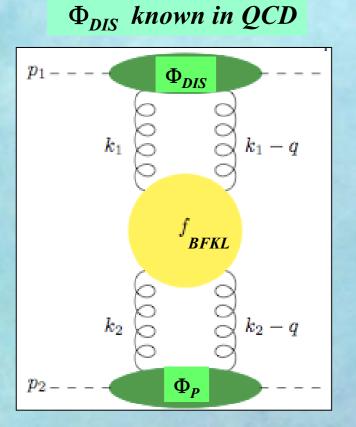
Pomeron and Gauge/String Duality

Brower, Polchinski, Strassler, and Tan, hep-th/0603115

Pomeron is a coherent color-singlet object, build from gluons, with universal properties; it is a closed string propagating in ADS space, when the conformal symmetry is broken at some infrared point in the fifth dimension

 $1 + \omega = 2 - \frac{2}{\sqrt{4\pi\alpha_s N}} \frac{\text{in ADS/CFT}}{\text{in N=4 YM SuSy QCD}}$ Kotikov, Lipatov, Onishchenko, Velizhanin, Physt. Lett. B 632, 754 (2006)





Consequences

HERA finding: Proton consists mainly of gluons they determine its main propeties, like the mass

LHeC will substantially improve the knowledge of gluon density

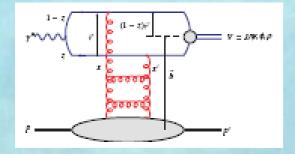
 Φ_{P} barely known

enhancement of leading eigenfun.by $(1/x)^{\circ}$

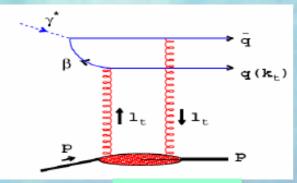
$$xg(x,k) = \sum_{n} \int \frac{dk'}{k'} \Phi_p(k') \left(\frac{k'x}{k}\right)^{-\omega_n} k^2 f_{\omega_n}^*(k') f_{\omega_n}(k),$$

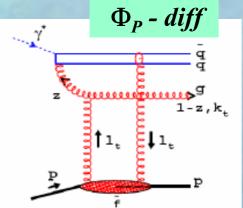
 $\Phi_{p,N}$ -Direct access to the gluonic structure of Protons and Nuclei

Diffractive Vector Mesons



Diffractive Jets





Consequences

Diffraction measurements at LHeC and EIC will substantially improve the knowledge of $\Phi_{p,\rm N}$ – gluonic structure of matter

Pomeron- Graviton relation: e.g. Measure the t-dependence of ω: Is DAF-Pomeron moving towards the Graviton or away from it?

Build detectors which are able to measure diffractive reaction with high precision

Instead of Conclusions

Study of Gluon Density are very important because it is the analog of Black Body Radiation in QED

It seemed hopeless to study pure Gluon Radiation since it is never free. However, it is becoming free for a short moment in HEP reactions

HERA has shown that physics processes at low-x are completely dominated by pure Gluon Density,

Investigation of Gluon Density has a chance to become as fundamental as Black Body radiation

The QCD improved parton model MRST/CTEQ approach

sea quark densities (input: $q_0(x)$ for every quark species..) $q(x,\mu^2) = q_0(x) + \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} q_0(\xi) \left\{ P_{qq}\left(\frac{x}{\xi}\right) ln \frac{\mu^2}{\kappa^2} + C_q\left(\frac{x}{\xi}\right) \right\} + \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} g_0(\xi) \left\{ P_{qg}\left(\frac{x}{\xi}\right) ln \frac{\mu^2}{\kappa^2} + C_g\left(\frac{x}{\xi}\right) \right\} \right\}$

MS-bar scheme

$$F_{2}(x,Q^{2}) = x \sum_{q} e_{q}^{2} \int_{x}^{l} \frac{d\xi}{\xi} q(\xi,Q^{2}) \left\{ \delta(1-\frac{x}{\xi}) + \frac{\alpha_{s}}{2\pi} C_{q}^{\overline{MS}} \left(\frac{x}{\xi}\right) + \ldots \right\} + x \sum_{q} e_{q}^{2} \int_{x}^{l} \frac{d\xi}{\xi} g(\xi,Q^{2}) \left\{ \frac{\alpha_{s}}{2\pi} C_{g}^{\overline{MS}} \left(\frac{x}{\xi}\right) + \ldots \right\} \right\}$$

second term gives a very small contribution

How Important is Saturation?

• Eikonal exponentiation (Glauber-Mueller, MV):

$$\frac{\mathrm{d}\sigma_{q\bar{q}}}{\mathrm{d}^2 \boldsymbol{b}} = 2\left[1 - \exp\left(-\frac{\pi^2}{2N_c}r^2\alpha_S(\mu^2)xg(x,\mu^2)T(b)\right)\right]$$

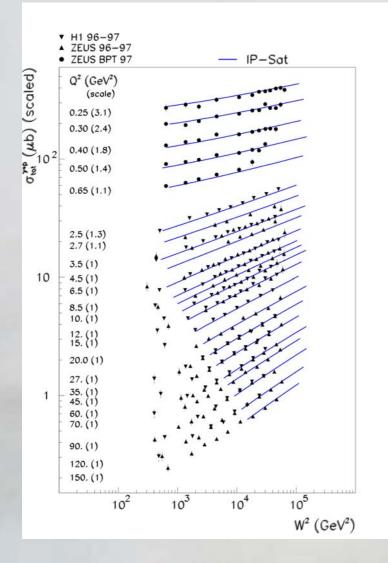
- Depends on impact parameter, momentum scale
- Define saturation scale Q_s by

$$\frac{d\sigma_{qq}(x,r^2 = 2/Q_{\rm S}^2(x,b))}{d^2b} = 2 \cdot \{1 - \exp(-1/2))\}$$

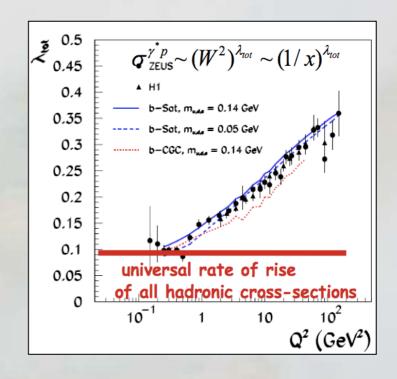
 Estimate Q_s using indicative models for proton impactparameter profile and gluon distribution:

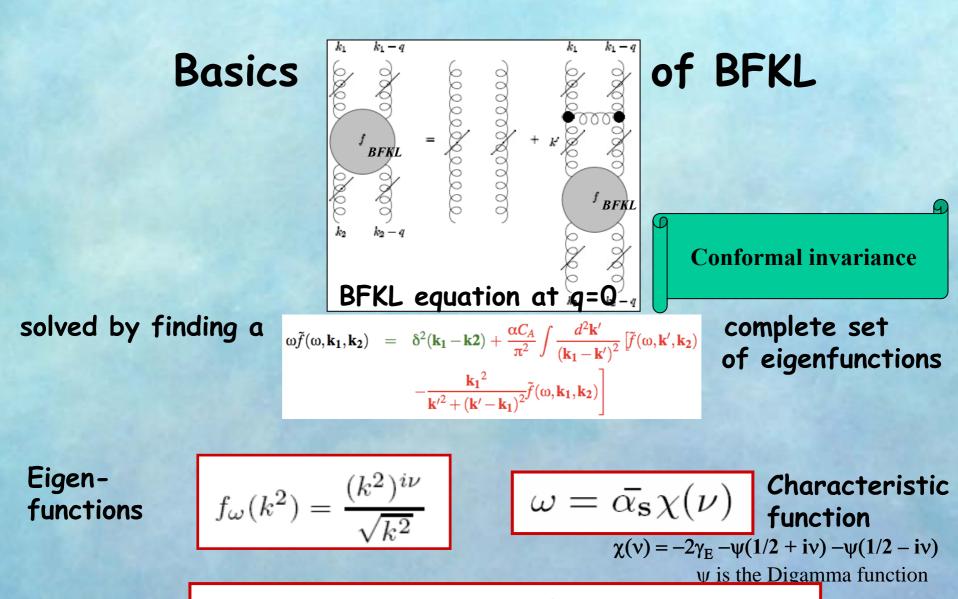
$$xg(x,\mu_0^2) = A_g \left(\frac{1}{x}\right)^{x_g} (1-x)^{5.6} + DGLAP \text{ evol}.$$

Low-x Physics @ HERA



 Increasing rate of growth with Q², well described by DGLAP evolution

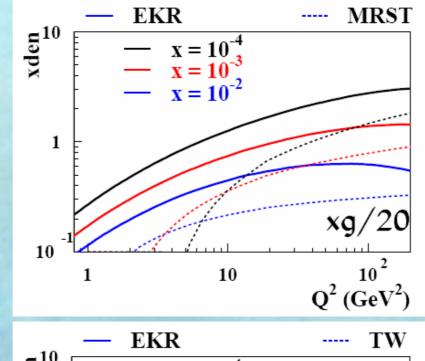


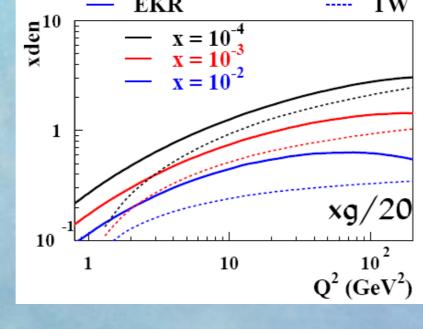


 $f_{BFKL}(\omega, k_1, k_2) = \int_{-\infty}^{\infty} d\nu \left(\frac{k_1^2}{k_2^2}\right)^{i\nu} \frac{1}{2\pi^2 k_1 k_2} \frac{1}{(\omega - \bar{\alpha_s}\chi(\nu))}$

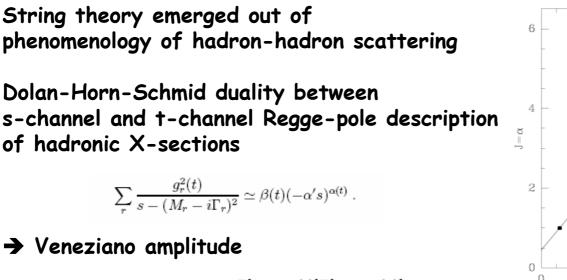
Green function

q





Pomeron-Graviton Correspondence



$$A_{\pi^+\pi^-\to\pi^+\pi^-}(s,t) = g_o^2 \frac{\Gamma[1-\alpha_\rho(t)]\Gamma[1-\alpha_\rho(s)]}{\Gamma[1-\alpha_\rho(s)-\alpha_\rho(t)]}$$

generalization by Virasoro \rightarrow dual models

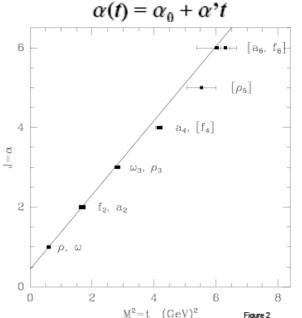
 $A(s,t,u) = \beta \frac{\Gamma(\frac{1}{2} - \frac{1}{2}\alpha(s))\Gamma(\frac{1}{2} - \frac{1}{2}\alpha(t))\Gamma(\frac{1}{2} - \frac{1}{2}\alpha(u))}{\Gamma(1 - \frac{1}{2}\alpha(t) - \frac{1}{2}\alpha(u))\Gamma(1 - \frac{1}{2}\alpha(s) - \frac{1}{2}\alpha(u))\Gamma(1 - \frac{1}{2}\alpha(s) - \frac{1}{2}\alpha(t))}$

→ mesons are open strings, closed strings necessary for unitarity

L - string length, E = c L, $J = a^2 E^2$

Virasoro-amplitude for $\alpha(0) = 1$ has a pole at s = t = 0with J = 2, a graviton \rightarrow starting point for theory of quantum gravity

> Superstring Theory, Green, Schwarz, Witten (1987) R. Brower hep-th/0508036



Maldacena Conjecture

from the talk by J. Maldacena

<u>Particle theory</u> = <u>gravity theory</u>

Most supersymmetry QCD theory

N . . .

(J.M.)

N colors

N = magnetic flux through S^5

Radius of curvature

$$R_{S^5} = R_{AdS_5} = \left(g_{YM}^2 \ N\right)^{1/4} l_s$$

Duality:

 $g^2 N$ is small \rightarrow perturbation theory is easy – gravity is bad

 $g^2 N$ is large \rightarrow gravity is good – perturbation theory is hard

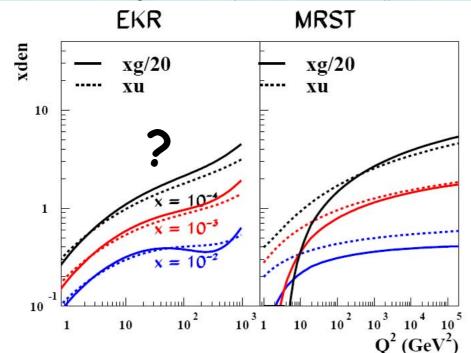
Strings made with gluons become fundamental strings.

Consequences for LHC

Good knowledge of gluon density around $x \sim 10^{-2}$ and $Q^2 \sim 10000$ GeV² is essential for LHC physics (Higgs region)

Large effort is going into precise measurement of W and Z inclusive X-sections → precise determination of sea-quark distributions → precise gluon density

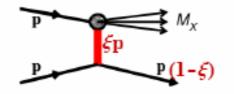
Is the sea-quark ←→ gluon density relation the same in the DGLAP-like picture (MRST/CTEQ) and DAF-Pomeron?



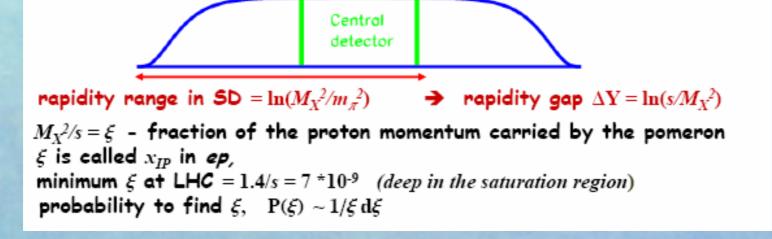
sea-quark \leftarrow \rightarrow gluon relation can be checked by the jets with p_T around 50 GeV

Consequences for LHC

Proton dissociation



rapidity range in ND = $\ln(s/m^2_{\pi})$



Can be measured with help of forward detectors down to $x \sim 10^{-7}$?

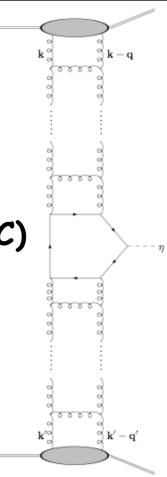
Consequences for LHC

- Consider diffractive production of a 'small' object
- Single or double diffraction?

- $y = ln(s/m_X^2)$ or $y_1 + y_2 = ln(s/m_X^2)$?

- Examples:
 - pp \rightarrow p (jet pair), pp \rightarrow p (D Λ_c)
 - pp \rightarrow p η_c p, (RHIC) pp \rightarrow p H p (LHC)
 - $pp \rightarrow p$ (jet pair) p

Measure the t-dependence of ω : Is DAF-Pomeron moving towards the Graviton or away from it? (EIC)



Consequences for EIC

Measure precisely the dependence of inclusive and exclusive diffractive processes (DVCS, J/Psi, rho, phi...) →Investigate QCD evolution with diffractive processes pure evolution of ~(gluon density)² t-dependence of effective exponents

→ !!! Investigate Structure of Matter as x increases !!!

Note: QCD evolution at HERA studied only with F₂ H1 and ZEUS measurement for F₂ agree to ~3% for diffractive processes systematic differences are factor 10 larger

Main reason: HERA experiments control only ~2/3 of the rapidity range

NLO BFKL with running α_s

solution away from k_{crit}

$$f_{\omega}(k) = e^{\pm i\varphi_{\omega}(k)},$$

$$\varphi_{\omega}(k) = 2 \int_{k}^{k_{\text{crit}}} \frac{dk'}{k'} |\nu_{\omega}| \varphi_{\omega}(k) = 2 \int_{k}^{k_{\text{crit}}} \frac{dk'}{k'} |\nu_{\omega}(k)|.$$

for all regions:

$$\overline{f_{\omega}}(k) = \sqrt[3]{\varphi_{\omega}(k)} \left[J_{\frac{1}{3}}(\varphi_{\omega}(k)) + J_{-\frac{1}{3}}(\varphi_{\omega}(k)) \right], \quad (k < k_{\text{crit}}),$$
$$= \sqrt{3}\sqrt[3]{\varphi_{\omega}(k)} K_{\frac{1}{3}}(\varphi_{\omega}(k)), \quad (k > k_{\text{crit}}),$$

Matching the solutions at $k=k_{crit}$ determines the phase of oscilations = $\pi/4$

near
$$k \sim k_0$$
 $\overline{f_{\omega}}(k) \sim \sin\left(\frac{\nu_{\omega}(k_0)}{k_0^2}\left(k^2 - k_0^2\right) - \eta\right)$

Lipatov 86 \rightarrow encode the infrared behaviour of QCD by assuming a fixed phase η at k_0

Quantization condition

$$\varphi_{\omega}(k_0) \equiv 2 \int_{k_0}^{k_{\rm crit}} \frac{dk'}{k'} \left| \nu_{\omega}(k) \right| = \left(n - \frac{1}{4} \right) \pi + \eta,$$

The QCD improved parton model MRST/CTEQ approach

sea quark densities

$$q(x,\mu^2) = q_{\theta}(x) + \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} q_{\theta}(\xi) \left\{ P_{qq}\left(\frac{x}{\xi}\right) ln \frac{\mu^2}{\kappa^2} + C_q\left(\frac{x}{\xi}\right) \right\} + \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} g_{\theta}(\xi) \left\{ P_{qg}\left(\frac{x}{\xi}\right) ln \frac{\mu^2}{\kappa^2} + C_g\left(\frac{x}{\xi}\right) \right\} \right\}$$

MS-bar scheme

$$F_{2}(x,Q^{2}) = x \sum_{q} e_{q}^{2} \int_{x}^{l} \frac{d\xi}{\xi} q(\xi,Q^{2}) \left\{ \delta(1-\frac{x}{\xi}) + \frac{\alpha_{s}}{2\pi} C_{q}^{\overline{MS}} \left(\frac{x}{\xi}\right) + \ldots \right\} + x \sum_{q} e_{q}^{2} \int_{x}^{l} \frac{d\xi}{\xi} g(\xi,Q^{2}) \left\{ \frac{\alpha_{s}}{2\pi} C_{g}^{\overline{MS}} \left(\frac{x}{\xi}\right) + \ldots \right\} \right\}$$

second term gives a very small contribution

Consequences for EIC

Measure precisely the dependence of inclusive and exclusive diffractive processes (DVCS, J/Psi, rho, phi...) →Investigate QCD evolution with diffractive processes pure evolution of (gluon density)² t-dependence of effective exponents!

Note: QCD evolution at HERA studied only with F₂ H1 and ZEUS measurement for F agree to ~3% for diffractive processes systematic diffrences are factor 10 larger

Main reason: HERA experiments control only ~2/3 of the rapidity range

measurement of α '

