

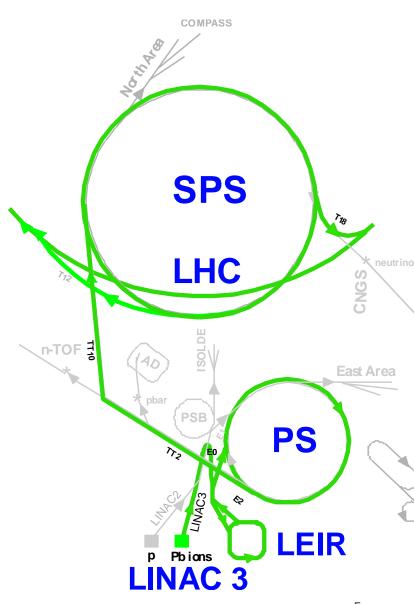
Nominal Pb-Pb collision parameters

		Injection	Collision	
Beam parameters				
Lead ion energy	[GeV]	36900	574000	
Lead ion energy/nucleon	[GeV]	177.4	2759.	
Relativistic "gamma" factor		190.5	2963.5	
Number of ions per bunch		$7. \times 10^{7}$		
Number of bunches		592		
Transverse normalized emittance	$[\mu\mathrm{m}]$	1.4 ^a	1.5	
Peak RF voltage (400 MHz system)	[MV]	8	16	
Synchrotron frequency	[Hz]	63.7	23.0	
RF bucket half-height		1.04×10^{-3}	3.56×10^{-4}	
Longitudinal emittance (4σ)	[eV s/charge]	0.7	2.5^{b}	
RF bucket filling factor		0.472	0.316	
RMS bunch length ^c	[cm]	9.97	7.94	
Circulating beam current	[mA]	6.12		
Stored energy per beam	[MJ]	0.245	3.81	
Twiss function $\beta_x = \beta_y = \beta^*$ at IP2	[m]	10.0	0.5	
RMS beam size at IP2	μ m	280.6	15.9	
Geometric luminosity reduction factor F ^d		-	1	
Peak luminosity at IP2	$[\mathrm{cm}^{-2}\mathrm{sec}^{-1}]$	-	$1. \times 10^{27}$	

CERN

Nominal Pb-Pb, lifetime parameters

		Injection	Collision		
Interaction data					
Total cross section	[mb]	-	514000		
Beam current lifetime (due to beam-beam) ^a	[h]	-	11.2		
Intra Beam Scattering					
RMS beam size in arc	[mm]	1.19	0.3		
RMS energy spread $\delta E/E_0$	$[10^{-4}]$	3.9	1.10		
RMS bunch length	[cm]	9.97	7.94		
Longitudinal emittance growth time	[hour]	3	7.7		
Horizontal emittance growth time ^b	[hour]	6.5	13		
Synchrotron Radiation					
Power loss per ion	[W]	3.5×10^{-14}	2.0×10^{-9}		
Power loss per metre in main bends	$[Wm^{-1}]$	8×10^{-8}	0.005		
Synchrotron radiation power per ring	[W]	1.4×10^{-3}	83.9		
Energy loss per ion per turn	[eV]	19.2	1.12×10^{6}		
Critical photon energy	[eV]	7.3×10^{-4}	2.77		
Longitudinal emittance damping time	[hour]	23749	6.3		
Transverse emittance damping time	[hour]	47498	12.6		
Variation of longitudinal damping partition number ^c		230	230		
Initial beam and luminosity lifetimes					
Beam current lifetime (due to residual gas scattering) d	[hour]	?	?		
Beam current lifetime (beam-beam, residual gas)	[hour]	-	< 11.2		
Luminosity lifetime ^e	[hour]	-	< 5.6		


Electron-nucleus (e-A) collisions

- The LHC will operate as a nucleus-nucleus (initially Pb-Pb) collider
 - Physics programme is expected to include:
 - Pb-Pb at $\sqrt{s_{NN}} = 5.5 \,\mathrm{TeV}$
 - p-Pb at
 - A-A where A may be Ca, O, ...
- Natural possibility of colliding electrons with nuclei
- Requires maintenance of LHC ion injector complex through to the time of operation of LHeC
 - Pursuing all stages of the LHC programme will in any case take several years
 - Upgrades to injectors ? Source, eg, EBIS ?

CERN

LHC Ion Injector Chain

- ECR ion source (2005)
 - Provide highest possible intensity of Pb²⁹⁺
- RFQ + Linac 3
 - Adapt to LEIR injection energy
 - strip to Pb⁵⁴⁺
- LEIR (2005)
 - Accumulate and cool Linac3 beam
 - Prepare bunch structure for PS
- PS (2006)
 - Define LHC bunch structure
 - Strip to Pb⁸²⁺
- SPS (2007)
 - Define filling scheme of LHC

CERN

Emittance tuning

- Phase advance choice
 - Phase advance per cell is NOT a good operational tuning knob for emittance
 - Can be changed occasionally but this requires some "re-commissioning" (LEP experience)
 - Limited possibilities for damping partition
 - Wigglers are a better choice for tuning
 - LEP experience shows that they *can* be operated as transparent/orthogonal knobs for damping time and emittance, useful up to ~50 GeV
 - Must be well-made and come with automatic compensation of optical perturbations (c.f. LEP "damping" and "emittance wigglers" vs. cheap LEP "polarization wigglers")

Summary

- Propose LHeCe arc cells with half length of LHC cells
 - Facilitate integration (?)
- Phase advance choice (90°,60°)
 - Good experience with dynamic aperture at LEP
 - Momentum compaction a bit small
 - Aperture ~ 2/3 that of LEP
- Quadrupole length is important
 - Damping partition variation
 - Operation with variable hadron energy/species
- Operation as e-Pb collider L>10²⁹ cm⁻²s⁻¹
 - Lighter ions possible
 - Maintain/upgrade ion injector complex