Neural Network Parton Distributions

Juan Rojo⁵

on behalf of the **NNPDF Collaboration**: R. D. Ball¹, L. Del Debbio¹, S. Forte², A. Guffanti³, J. I. Latorre⁴, A. Piccione², J. R.⁵, M. Ubiali¹

 1 University of Edinburgh, 2 Università di Milano, 3 Albert-Ludwigs-Universität Freiburg, 4 Universitat de Barcelona, 5 LPTHE, UPMC Paris VI

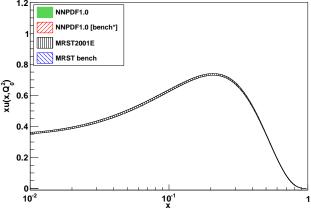
LHeC 2008 Workshop, Divonne. France

Introduction

- After 40 years of QCD, still issues to be understood in the determination of parton distributions (See yesterday G. Altarelli's talk)
- Problems in standard approach to PDF determination summarized by the 2006 HERA-LHC PDF benchmark analysis
- The NNPDF Collaboration approach is a proposal to overcome various problems in PDF determination with statistically sound techniques
- Important to faithfully estimate impact of PDF behaviour in extrapolation regions as for the LHeC and its potential feedback to LHC
- In this talk → General strategy and results from DIS analysis, (A determination of parton distribution with faithful uncertainty estimation, arxiv:0808.1231)
- See afternoon talk for NNPDF applications to LHeC physics

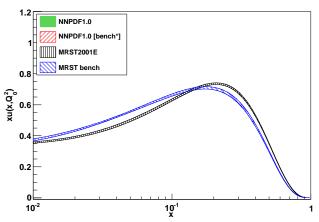
PDF benchmark analysis

Benchmark partons

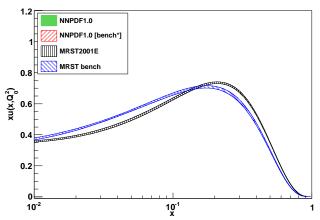

Proposed during the first HERA-LHC workshop → Benchmark PDF fit to a reduced, consistent DIS data set:

Set	$N_{ m dat}$	x_{\min}	x_{max}	Q_{\min}^2	$Q_{\rm max}^2$
BCDMSp	322	$7 \ 10^{-2}$	0.75	10.3	230
NMC	95	0.028	0.48	9	6
NMC-pd	73	0.035	0.67	11.4	99
Z97NC	206	$1.6 \ 10^{-4}$	0.65	10	$2 \ 10^4$
$H197lowQ^2$	77	$3.2 \ 10^{-4}$	0.2	12	150

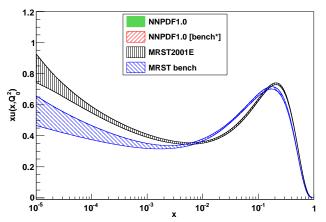
- Compare results between PDF fitting collaborations and with global fits including more data
- Note for benchmark fit $\Delta\chi^2=1$, while for global fit $\Delta\chi^2_{\rm mrst}=50, \Delta\chi^2_{\rm cteq}=100 \to {\rm Statistical}$ treatment is dataset dependent, also input parametrizations are different



Compare $u(x, Q^2 = 2 \text{ GeV}^2)$ from MRST2001 global PDF determination ...



... with MRST HERA-LHC benchmark partons



PDFs inconsistent by many $\sigma!$ in data region

Similar inconsistencies in the extrapolation region

Problems in standard PDF determination approach

- Summary of HERA-LHC benchmark fit: Benchmark partons do not agree with global fit partons within uncertainties
- ▶ Implications \rightarrow Both the PDF input parametrization (and flavour assumptions) and the statistical treatment (value of $\Delta\chi^2$) need to be tuned to experimental data set for standard approach
- Situation not satisfactory, specially problematic to predict behaviour of PDFs in extrapolation regions like in the LHeC case
- ► Global fits introduce large tolerances \rightarrow Error blow-up by a factor $S = \sqrt{\Delta\chi^2/2.7}$ (B. Cousins, PDF4LHC) \rightarrow $S_{\rm cteq} \sim$ 6, $S_{\rm mstw} \sim$ 4.5 both in input measurements and in output PDFs
- Need statistically reliable way to determine if such large values of *S* are indeed mandatory. Note $\Delta \chi^2 \sim 1$ in DIS+DY fits (Alekhin)

Benchmark partons

THE NNPDF APPROACH

▶ Generate N_{rep} Monte Carlo replicas $F_i^{(\text{art})(k)}$ of the original data $F_i^{(\text{exp})}$

$$F_i^{(\mathrm{art})(k)} = \left(1 + r_N^{(k)} \sigma_N\right) \left(F_i^{(\mathrm{exp})} + \sum_{p=1}^{N_{\mathrm{sys}}} r_p^{(k)} \sigma_{i,p} + r_i^{(k)} \sigma_{i,s}\right)$$

lacktriangle Evolve each PDF parametrized with Neural Nets $q_lpha^{({
m net})(k)}(x,Q_0^2)$

$$F_i^{(\mathrm{net})(\mathrm{k})}(x,Q^2) = C_{i\alpha}(x,\alpha(Q^2)) \otimes q_{\alpha}^{(\mathrm{net})(k)}\left(x,Q^2\right)$$

ightharpoonup Training: Minimize χ^2 using Genetic Algs. + Dynamical Stopping:

$$\chi^{2(k)} = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(F_i^{(\text{art})(k)} - F_i^{(\text{net})(k)} \right) \left(\text{cov}_{ij}^{-1} \right) \left(F_j^{(\text{art})(k)} - F_j^{(\text{net})(k)} \right)$$

lacktriangle Set of trained NNs ightarrow Representation of the PDFs probability density

$$\left\langle \mathcal{F}\left[q_{lpha}^{(\mathrm{net})}
ight]
ight
angle =rac{1}{N_{\mathrm{rep}}}\sum_{}^{N_{\mathrm{rep}}}\mathcal{F}\left[q_{lpha}^{-(\mathrm{net})(k)}
ight]$$

<ロ> (回) (回) (目) (目) (目) (回)

▶ Generate N_{rep} Monte Carlo replicas $F_i^{(\text{art})(k)}$ of the original data $F_i^{(\text{exp})}$

$$F_i^{(\mathrm{art})(k)} = \left(1 + r_N^{(k)} \sigma_N \right) \left(F_i^{(\mathrm{exp})} + \sum_{p=1}^{N_{\mathrm{sys}}} r_p^{(k)} \sigma_{i,p} + r_i^{(k)} \sigma_{i,s} \right)$$

Evolve each PDF parametrized with Neural Nets $q_{\alpha}^{(\mathrm{net})(k)}(x,Q_0^2)$

$$F_i^{(\mathrm{net})(\mathrm{k})}(x,Q^2) = C_{i\alpha}(x,\alpha(Q^2)) \otimes q_{\alpha}^{(\mathrm{net})(k)}\left(x,Q^2\right)$$

ightharpoonup Training: Minimize χ^2 using Genetic Algs. + Dynamical Stopping:

$$\chi^{2(k)} = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(F_i^{(\text{art})(k)} - F_i^{(\text{net})(k)} \right) \left(\text{cov}_{ij}^{-1} \right) \left(F_j^{(\text{art})(k)} - F_j^{(\text{net})(k)} \right)$$

▶ Set of trained NNs → Representation of the PDFs probability density

$$\left\langle \mathcal{F} \left[q_{lpha}^{(\mathrm{net})}
ight]
ight
angle = rac{1}{N_{--}} \sum_{k}^{N_{\mathrm{rep}}} \mathcal{F} \left[q_{lpha}^{-(\mathrm{net})(k)}
ight]$$

(ロ) (回) (回) (目) (目) (目) (の)

▶ Generate N_{rep} Monte Carlo replicas $F_i^{(\text{art})(k)}$ of the original data $F_i^{(\text{exp})}$

$$F_i^{(\mathrm{art})(k)} = \left(1 + r_N^{(k)} \sigma_N\right) \left(F_i^{(\mathrm{exp})} + \sum_{p=1}^{N_{\mathrm{sys}}} r_p^{(k)} \sigma_{i,p} + r_i^{(k)} \sigma_{i,s}\right)$$

lacktriangle Evolve each PDF parametrized with Neural Nets $q_lpha^{({
m net})(k)}(x,Q_0^2)$

$$F_i^{(\mathrm{net})(k)}(x,Q^2) = C_{i\alpha}(x,\alpha(Q^2)) \otimes q_{\alpha}^{(\mathrm{net})(k)}\left(x,Q^2\right)$$

 $lap{N}$ Training: Minimize χ^2 using Genetic Algs. + Dynamical Stopping:

$$\chi^{2(k)} = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(F_i^{(\text{art})(k)} - F_i^{(\text{net})(k)} \right) \left(\text{cov}_{ij}^{-1} \right) \left(F_j^{(\text{art})(k)} - F_j^{(\text{net})(k)} \right)$$

▶ Set of trained NNs → Representation of the PDFs probability density

$$\left\langle \mathcal{F} \left[q_{lpha}^{(\mathrm{net})}
ight]
ight
angle = rac{1}{N} - \sum_{k}^{N_{\mathrm{rep}}} \mathcal{F} \left[q_{lpha}^{-(\mathrm{net})(k)}
ight]$$

◆ロト ◆部 > ◆注 > ◆注 > ・注 ・ からび

Generate N_{rep} Monte Carlo replicas $F_i^{(\text{art})(k)}$ of the original data $F_i^{(\text{exp})}$

$$F_i^{(\mathrm{art})(k)} = \left(1 + r_N^{(k)} \sigma_N\right) \left(F_i^{(\mathrm{exp})} + \sum_{p=1}^{N_{\mathrm{sys}}} r_p^{(k)} \sigma_{i,p} + r_i^{(k)} \sigma_{i,s}\right)$$

Evolve each PDF parametrized with Neural Nets $q_{\alpha}^{(\text{net})(k)}(x, Q_0^2)$

$$F_i^{(\mathrm{net})(\mathrm{k})}(x,Q^2) = C_{i\alpha}(x,\alpha(Q^2)) \otimes q_{\alpha}^{(\mathrm{net})(k)}\left(x,Q^2\right)$$

► Training: Minimize χ^2 using Genetic Algs. + Dynamical Stopping:

$$\chi^{2(k)} = \frac{1}{N_{\mathrm{dat}}} \sum_{i,j=1}^{N_{\mathrm{dat}}} \left(F_i^{(\mathrm{art})(k)} - F_i^{(\mathrm{net})(k)} \right) \left(\mathrm{cov}_{ij}^{-1} \right) \left(F_j^{(\mathrm{art})(k)} - F_j^{(\mathrm{net})(k)} \right)$$

$$\left\langle \mathcal{F}\left[q_{lpha}^{(\mathrm{net})}
ight]
ight
angle =rac{1}{N_{\mathrm{rep}}}\sum_{k=1}^{N_{\mathrm{rep}}}\mathcal{F}\left[q_{lpha}^{-(\mathrm{net})(k)}
ight]$$

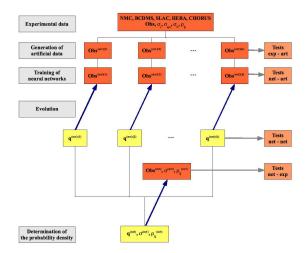
LPTHE

▶ Generate N_{rep} Monte Carlo replicas $F_i^{(\text{art})(k)}$ of the original data $F_i^{(\text{exp})}$

$$F_i^{(\mathrm{art})(k)} = \left(1 + r_N^{(k)} \sigma_N\right) \left(F_i^{(\mathrm{exp})} + \sum_{p=1}^{N_{\mathrm{sys}}} r_p^{(k)} \sigma_{i,p} + r_i^{(k)} \sigma_{i,s}\right)$$

lacktriangle Evolve each PDF parametrized with Neural Nets $q_lpha^{({
m net})(k)}(x,Q_0^2)$

$$F_i^{(\mathrm{net})(\mathrm{k})}(x,Q^2) = C_{i\alpha}(x,\alpha(Q^2)) \otimes q_{\alpha}^{(\mathrm{net})(k)}\left(x,Q^2\right)$$


► Training: Minimize χ^2 using Genetic Algs. + Dynamical Stopping:

$$\chi^{2(k)} = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(F_i^{(\text{art})(k)} - F_i^{(\text{net})(k)} \right) \left(\text{cov}_{ij}^{-1} \right) \left(F_j^{(\text{art})(k)} - F_j^{(\text{net})(k)} \right)$$

► Set of trained NNs → Representation of the PDFs probability density

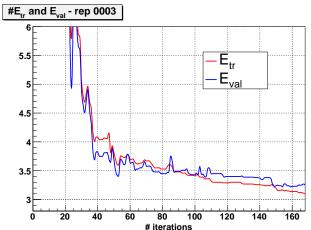
$$\left\langle \mathcal{F}\left[q_{lpha}^{(\mathrm{net})}
ight]
ight
angle =rac{1}{ extsf{N}_{\mathrm{rep}}}\sum_{k=1}^{N_{\mathrm{rep}}}\mathcal{F}\left[q_{lpha}^{-(\mathrm{net})(k)}
ight]$$

(ㅁ) (@) (돌) (돌) (돌) **연** (연)

Dynamical stopping

In a standard fit, look for minimum χ^2 for given parametrization.

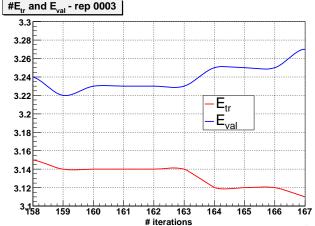
- If basis too large → convergence never reached
- ▶ If basis too small → parametrization bias


How can one obtain an unbiased compromise? For NNs, smoothness decreases as fit quality improves \rightarrow Stop before fitting statistical noise (overlearning).

- 1. Divide the data set into training and validation sets
- 2. Minimize χ^2 of training set, monitor χ^2 of validation set
- 3. Stop minimization when validation χ^2 begins to rise (overlearning)

Dynamical stopping

Stop minimization when validation χ^2 begins to rise (overlearning)

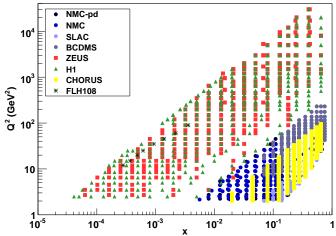


Juan Rojo

Dynamical stopping

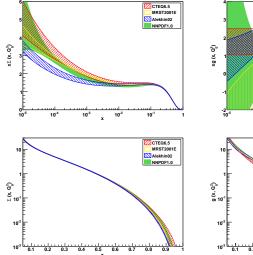
Stop minimization when validation χ^2 begins to rise (overlearning)

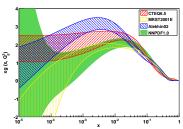
←□→ ←□→ ← □→ ← □→ Juan Rojo

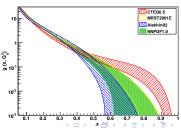


NNPDF1.0 - details

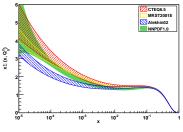
- NNPDF1.0 → PDF set determination from all relevant DIS experimental data (~ 3000 data points)
- ▶ 5 PDFs $(\Sigma(x), V(x), T_3(x), \Delta_S(x))$ and g(x) parametrized with NNs at $Q_0^2 = 2 \text{ GeV}^2$ (37 free params each)
- Valence and momentum sum rules incorporated
- ► Flavour assumptions $\rightarrow s(x) = \bar{s}(x) = C_s/2(\bar{u}(x) + \bar{d}(x))$
- ▶ NLO evolution with ZM-VFN scheme for heavy quarks

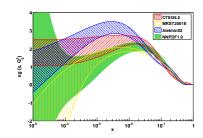



Data set



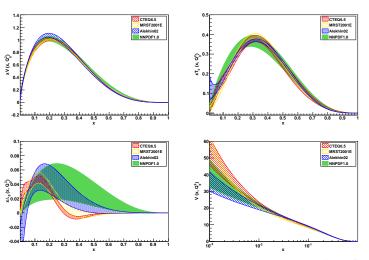
Results - Singlet PDFs





Juan Rojo

Results - Singlet PDFs



(See also G. Altarelli's plenary talk)

- ► NNPDF1.0 uncertainties faithfully determined
- PDF error larger than other PDF sets in some regions (extrapolation), smaller in others (not artificially inflated by large $\Delta\chi^2 \sim 50/100$)
- ▶ In general close to CTEQ6.5 in data region

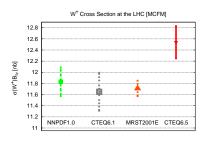
Parametrization independence

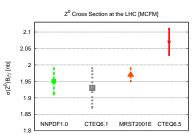
Quantify statistical differences between PDF sets \rightarrow Distances between two probability distributions which describe two sets of PDFs (i.e. the gluon $\{g_{ik}^{(1)} = g_k^{(1)}(x_i, Q_0^2)\}$):

$$\langle d[g] \rangle = \sqrt{\left\langle \frac{\left(\langle g_i \rangle_{(1)} - \langle g_i \rangle_{(2)}\right)^2}{\sigma^2[g_i^{(1)}] + \sigma^2[g_i^{(2)}]} \right\rangle_{\text{dat}}}$$

 $\langle d[g] \rangle \rightarrow$ Distance between PDF in units of the variance of expectation value $\langle g \rangle$

For statistically equivalent PDF sets: $\langle d[g] \rangle \sim \langle d[\sigma_g] \rangle \sim 1$

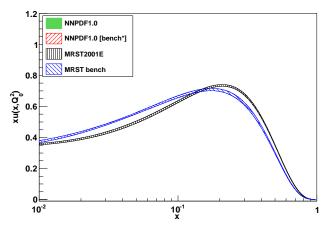

Parametrization independence


Check stability for NNs arch. from 2-5-3-1 to 2-4-3-1 (6 params less per PDF)

	Data	Extrapolation		
$\Sigma(x,Q_0^2)$	$5 \ 10^{-4} \le x \le 0.1$	$10^{-5} \le x \le 10^{-4}$		
$\langle d[q] \rangle$	0.98	1.25		
$\langle d[\sigma] \rangle$	1.14	1.34		
$g(x, Q_0^2)$	$5 \ 10^{-4} \le x \le 0.1$	$10^{-5} \le x \le 10^{-4}$		
$\langle d[q] \rangle$	1.52	1.15		
$\langle d[\sigma] \rangle$	1.16	1.07		
$T_3(x, Q_0^2)$	$0.05 \le x \le 0.75$	$10^{-3} \le x \le 10^{-2}$		
$\langle d[q] \rangle$	1.00	1.11		
$\langle d[\sigma] \rangle$	1.76	2.27		
$V(x, Q_0^2)$	$0.1 \le x \le 0.6$	$3 \ 10^{-3} \le x \le 3 \ 10^{-2}$		
$\langle d[q] \rangle$	1.30	0.90		
$\langle d[\sigma] \rangle$	1.10	0.98		
$\Delta_S(x,Q_0^2)$	$0.1 \le x \le 0.6$	$3 \ 10^{-3} \le x \le 3 \ 10^{-2}$		
$\langle d[q] \rangle$	1.04	1.91		
$\langle d[\sigma] \rangle$ 1.44		1.80		

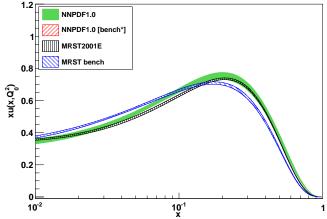
Results - Predictions for LHC

	$\sigma_{W^+} \mathcal{B}_{I^+ \nu_I}$	$\Delta \sigma_{W^+}/\sigma_{W^+}$	$\sigma_W - B_{I-\nu_I}$	$\Delta \sigma_{W^-}/\sigma_{W^-}$	$\sigma_Z \mathcal{B}_{I^+I^-}$	$\Delta \sigma_Z / \sigma_Z$
NNPDF1.0	11.83 ± 0.26	2.2%	8.41 ± 0.20	2.4%	1.95 ± 0.04	2.1%
CTEQ6.1	11.65 ± 0.34	2.9%	8.56 ± 0.26	3.0%	1.93 ± 0.06	3.1%
MRST01	11.71 ± 0.14	1.2%	8.70 ± 0.10	1.1%	1.97 ± 0.02	1.0%
CTEQ6.5	12.54 ± 0.29	2.3%	9.19 ± 0.22	2.4%	2.07 ± 0.04	1.9%

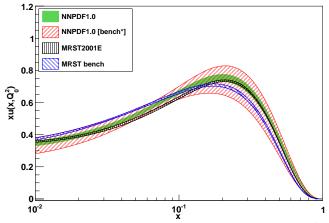


PDF benchmark analysis

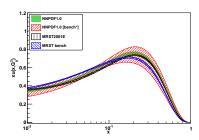
- ▶ Does the NNPDF approach solve the problem with MRST benchmark partons?
- Compare NNPDF1.0 partons with a PDF set obtained from the reduced data set of the HERA-LHC workshop
- For a complete NNPDF version of the HERA-LHC PDF benchmark, see A. Piccione's talk at PDF4LHC later this week



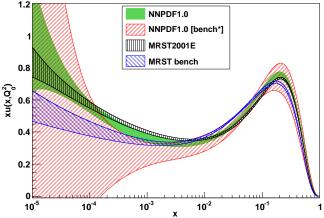
PDFs inconsistent by many $\sigma!$ in data region in standard approach ...



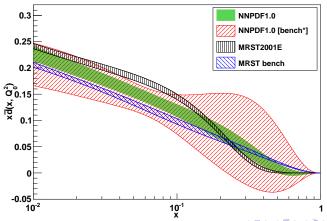
... but not within the NNPDF approach: Full DIS fit



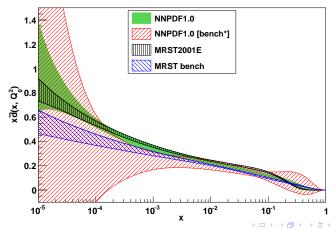
... but not within the NNPDF approach: Benchlike fit



- NNPDF1.0 consistent with MRST global fit
- NNPDF benchlike consistent with both NNPDF1.0 and MRST global and benchmark fits
- Error determination understimated in standard aproach to PDF determination (central values ok)



Problems also cured in (low-x) extrapolation region



Same for other PDFs - $\bar{d}(x, Q_0^2)$ in data region

Juan Rojo

Same for other PDFs - $\bar{d}(x, Q_0^2)$ in extrapolation region

Juan Rojo

OUTLOOK

Outlook

- ► NNPDF1.0 → DIS NNPDF set completed and available from the LHAPDF interface
- ► Faithful determination of uncertainties → Suited to studies in extrapolation regions like LHeC (see afternoon's talk) and for its feedback to precision LHC physics
- Work in progress to add hadronic data and heavy quark effects, and detailed studies of PDF uncertainty impact on LHC physics

Thanks for your attention!

Outlook

- ▶ NNPDF1.0 → DIS NNPDF set completed and available from the I HAPDF interface
- ► Faithful determination of uncertainties → Suited to studies in extrapolation regions like LHeC (see afternoon's talk) and for its feedback to precision LHC physics
- Work in progress to add hadronic data and heavy quark effects, and detailed studies of PDF uncertainty impact on LHC physics

Thanks for your attention!

Outlook

Neural Network Parton Distributions

Dependence with preprocessing

R. Thorne, HERA-LHC 2006 proceedings

errors, but these are relatively small. However, the partons extracted using a very limited data set are completely incompatible, even allowing for the uncertainties, with those obtained from a global fit with an identical treatment of errors and a minor difference in theoretical procedure. This implies that the inclusion of more data from a variety of different experiments moves the central values of the partons in a manner indicating either that the different experimental data are inconsistent with each other, or that the theoretical framework is inadequate for correctly describing the full range of data. To a certain extent both explanations are probably true. Some data sets are not entirely consistent with each other (even if they are seemingly equally reliable). Also, there are a wide variety of reasons why NLO perturbative QCD might require modification for some data sets, or in some kinematic regions [89]. Whatever the reason for the inconsistency between the MRST benchmark partons and the MRST01 partons, the comparison exhibits the dangers in extracting partons from a very limited set of data and taking them seriously. It also clearly illustrates the problems in determining the true uncertainty on parton distributions.

Problems in standard PDF determination approach

- Consensus (PDF4LHC workshop): serious problem in PDF fits
- Problem summarized by the HERA-LHC benchmark fit: Benchmark partons do not agree with global fit partons within errors
- Implications → either experiments are incompatible, or parametrizations not flexible enough, or both
- ▶ Global fit solution → Error blow-up by a factor $S = \sqrt{\Delta \chi^2/2.7}$ (B. Cousins, PDF4LHC) → $S_{\rm cteq} \sim$ 6, $S_{\rm mstw} \sim$ 4.5 both in input measurements and in output PDFs (very large!)
- Need statistically reliable way to determine if such large values of S are indeed mandatory. Note $\Delta \chi^2 \sim 1$ in DIS+DY fits (Alekhin)

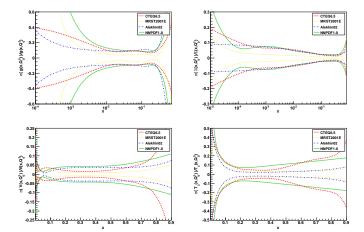
Experimental data set

Experiment	Set	$N_{ m dat}$	x_{\min}	x_{max}	Q_{\min}^2	$Q_{\rm max}^2$	σ_{tot} (%)	F	Ref.
SLAC									
	SLACp	211 (47)	.07000	.85000	0.6	29.	3.6	F_2^P F_2^d	[51]
BCDMS	SLACd	211 (47)	.07000	.85000	0.6	29.	3.2	F_2^a	[51]
BODMS	BCDMSp	351 (333)	.07000	.75000	7.5	230.	5.5	F_2^p F_2^d F_2^p	[47]
	BCDMSd	254 (248)	.07000	.75000	8.8	230.	6.6	$F_2^{\bar{d}}$	[48]
NMC		288 (245)	.00350	.47450	0.8	61.	5.0		[50]
NMC-pd		260 (153)	.00150	.67500	0.2	99.	2.1	F_{2}^{d}/F_{2}^{p}	[49]
ZEUS								+	
	Z97lowQ2	80	.00006	.03200	2.7	27.	4.9	$\tilde{\sigma}^{NC,e^+}$	[56]
	Z97NC	160	.00080	.65000	35.0	20000.	7.7	$\tilde{\sigma}^{NC,e^+}$	[56]
	Z97CC	29	.01500	.42000	280.0	17000.	34.2	$\tilde{\sigma}^{CC,e^+}$	[57]
	Z02NC	92	.00500	.65000	200.0	30000.	13.2	$\tilde{\sigma}^{NC,e}$	[58]
	Z02CC	26	.01500	.42000	280.0	30000.	40.2	$\tilde{\sigma}^{CC,e}$	[59]
	Z03NC	90	.00500	.65000	200.0	30000.	9.1	$\tilde{\sigma}^{NC,e^+}$	[60]
	Z03CC	30	.00800	.42000	280.0	17000.	31.0	$\tilde{\sigma}^{CC,e+}$	[61]
H1									
	H197mb	67 (55)	.00003	.02000	1.5	12.	4.9	$\tilde{\sigma}^{NC,e^+}$	[52]
	H197lowQ2	80	.00016	.20000	12.0	150.	4.2	$\tilde{\sigma}^{NC,e+}$	[52]
	H197NC	130	.00320	.65000	150.0	30000.	13.3	$\tilde{\sigma}^{NC,e^+}$	[53]
	H197CC	25	.01300	.40000	300.0	15000.	29.8	$\tilde{\sigma}^{CC,e}$	[53]
	H199NC	126	.00320	.65000	150.0	30000.	15.5	$\tilde{\sigma}^{NC,e^-}$	[54]
	H199CC	28	.01300	.40000	300.0	15000.	27.6	$\bar{\sigma}^{CC,e}$	[54]
	H199NChv	13	.00130	.01050	100.0	800.	9.2	$\bar{\sigma}^{NC,e}$	[55]
	H100NC	147	.00131	.65000	100.0	30000.	10.4	$\bar{\sigma}^{NC,e^+}$	[55]
	H100CC	28	.01300	.40000	300.0	15000.	21.8	$\bar{\sigma}^{CC,e+}$	[55]
CHORUS	1110000	20	.01300	.40000	555.0	10000.	21.0		[00]
	$\text{CHORUS}\nu$	607 (471)	.02000	.65000	0.3	95.	11.2	$\tilde{\sigma}^{\nu}_{\bar{\nu}}$	[63]
FLH108	$CHORUS\bar{\nu}$	607 (471) 8	.02000	.65000	0.3 12.0	95. 90.	18.7 69.2	$\tilde{\sigma}^{\bar{\nu}}$ F_L	[63] [62]
Total		3948 (3161)	.00028	.00360	12.0	90.	09.2	r _L	[02]

Juan Rojo

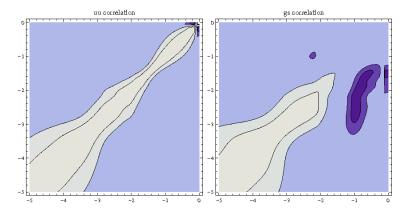
Statistical estimators

$\chi^2_{ m tot}$	1.34
$\langle E \rangle$	2.71
$\langle E_{ m tr} angle$	2.68
$\langle \mathit{E}_{\mathrm{val}} angle$	2.72
$\langle { m TL} angle$	824
$\langle \sigma^{(exp)} \rangle_{dat}$ $\langle \sigma^{(net)} \rangle_{dat}$	$5.6 \ 10^{-2}$
	$1.4 \ 10^{-2}$
$\langle \rho^{(exp)} \rangle_{dat}$	0.15
$\langle ho^{ m (net)} angle_{ m dat}$	0.40
$\langle \text{cov}^{(exp)} \rangle_{det}$	$1.0 \ 10^{-3}$
$\langle \text{cov}^{\text{(net)}} \rangle_{\text{dat}}^{\text{dat}}$	$1.6 \ 10^{-4}$



Dependence with preprocessing

Data region								
	$n_v = 0.1$	$n_v = 0.5$	$m_v = 2$	$m_v = 4$	$n_s = 0.8$	$n_s = 1.6$	$m_s = 2$	$m_s = 4$
$\Sigma(x, Q_0^2)$								
$\langle d[q] \rangle$	1.34	1.25	1.37	2.14	1.72	1.38	1.45	1.64
$\langle d[\sigma] \rangle$	1.45	1.44	1.25	1.44	2.03	2.66	0.95	1.35
$g(x, Q_0^2)$								
$\langle d[q] \rangle$	1.31	1.30	2.69	1.15	3.06	2.08	1.20	1.74
$\langle d[\sigma] \rangle$	1.34	1.60	1.56	1.37	3.21	2.44	0.98	1.72
$T_3(x, Q_0^2)$								
$\langle d[q] \rangle$	1.97	2.48	8.35	9.74	1.31	3.23	1.03	1.41
$\langle d[\sigma] \rangle$	1.10	1.47	1.98	1.53	1.10	2.66	1.76	1.99
$V(x, Q_0^2)$								
$\langle d[q] \rangle$	11.03	1.55	3.61	5.60	0.94	2.12	1.25	3.54
$\langle d[\sigma] \rangle$	3.57	4.74	4.04	3.09	1.03	1.10	0.66	1.98
$\Delta_S(x, Q_0^2)$								
$\langle d[q] \rangle$	2.00	2.29	7.51	2.36	1.14	1.70	0.76	0.92
$\langle d[\sigma] \rangle$	1.25	5.20	1.17	3.50	1.00	1.98	0.97	2.05
Extrapolation								
	$n_v = 0.1$	$n_v = 0.5$	$m_v = 2$	$m_v = 4$	$n_s = 0.8$	$n_s = 1.6$	$m_s = 2$	$m_s = 4$
$\Sigma(x, Q_0^2)$							$m_s = z$	$m_s = 4$
$\omega(x,Q_0)$	No - 0.1						$m_s = z$	$m_8 = 4$
$\langle d[q] \rangle$	1.06	1.69	1.49	1.84	7.72	4.67	0.87	3.15
			1.49 2.11	1.84 1.52				
$\langle d[q] \rangle$	1.06	1.69			7.72	4.67	0.87	3.15
$\langle d[q] \rangle$ $\langle d[\sigma] \rangle$	1.06	1.69			7.72	4.67	0.87	3.15
$\langle d[q] \rangle$ $\langle d[\sigma] \rangle$ $g(x, Q_0^2)$	1.06 1.12	1.69 1.84	2.11	1.52	7.72 2.47	4.67 3.66	0.87 0.82	3.15 2.34
$\langle d[q] \rangle$ $\langle d[\sigma] \rangle$ $g(x, Q_0^2)$ $\langle d[q] \rangle$	1.06 1.12	1.69 1.84	2.11	1.52	7.72 2.47	4.67 3.66 4.73	0.87 0.82	3.15 2.34 3.49
$\langle d[q] \rangle$ $\langle d[\sigma] \rangle$ $g(x, Q_0^2)$ $\langle d[q] \rangle$ $\langle d[\sigma] \rangle$	1.06 1.12	1.69 1.84	2.11	1.52	7.72 2.47	4.67 3.66 4.73	0.87 0.82	3.15 2.34 3.49
$\langle d[q] \rangle$ $\langle d[\sigma] \rangle$ $g(x, Q_0^2)$ $\langle d[q] \rangle$ $\langle d[\sigma] \rangle$ $T_3(x, Q_0^2)$	1.06 1.12 1.41 1.41	1.69 1.84 2.32 1.86	2.11 2.33 1.95	1.52 1.34 1.30	7.72 2.47 1.62 2.15	4.67 3.66 4.73 2.72	0.87 0.82 1.04 0.81	3.15 2.34 3.49 2.38
$ \begin{array}{c} \langle d[q] \rangle \\ \langle d[\sigma] \rangle \\ \\ \langle d[\sigma] \rangle \\ \\ g(x,Q_0^2) \\ \langle d[q] \rangle \\ \langle d[\sigma] \rangle \\ \\ T_3(x,Q_0^2) \\ \langle d[q] \rangle \\ \langle d[\sigma] \rangle \\ \\ \langle d[\sigma] \rangle \\ \end{array} $	1.06 1.12 1.41 1.41 1.71	1.69 1.84 2.32 1.86	2.11 2.33 1.95 7.40	1.52 1.34 1.30	7.72 2.47 1.62 2.15	4.67 3.66 4.73 2.72	0.87 0.82 1.04 0.81	3.15 2.34 3.49 2.38
$\langle d[q] \rangle$ $\langle d[\sigma] \rangle$ $g(x, Q_0^2)$ $\langle d[q] \rangle$ $\langle d[\sigma] \rangle$ $T_3(x, Q_0^2)$ $\langle d[q] \rangle$	1.06 1.12 1.41 1.41 1.71	1.69 1.84 2.32 1.86	2.11 2.33 1.95 7.40	1.52 1.34 1.30	7.72 2.47 1.62 2.15	4.67 3.66 4.73 2.72	0.87 0.82 1.04 0.81	3.15 2.34 3.49 2.38
$\langle d[q] \rangle$ $\langle d[\sigma] \rangle$ $g(x, Q_0^2)$ $\langle d[q] \rangle$ $\langle d[q] \rangle$ $\langle d[\sigma] \rangle$ $T_3(x, Q_0^2)$ $\langle d[\sigma] \rangle$ $\langle d[\sigma] \rangle$ $V(x, Q_0^2)$	1.06 1.12 1.41 1.41 1.71 4.83	1.69 1.84 2.32 1.86 2.70 4.54	2.33 1.95 7.40 2.89	1.52 1.34 1.30 1.60 5.09	7.72 2.47 1.62 2.15 1.36 1.00	4.67 3.66 4.73 2.72 2.37 1.65	0.87 0.82 1.04 0.81 0.78 0.92	3.15 2.34 3.49 2.38 0.91 1.26
$\langle d[q] \rangle$ $\langle d[\sigma] \rangle$ $g(x, Q_0^2)$ $\langle d[q] \rangle$ $\langle d[\sigma] \rangle$ $T_3(x, Q_0^2)$ $\langle d[q] \rangle$ $\langle d[\sigma] \rangle$ $\langle d[\sigma] \rangle$ $\langle d[\sigma] \rangle$ $\langle d[\sigma] \rangle$	1.06 1.12 1.41 1.41 1.71 4.83	1.69 1.84 2.32 1.86 2.70 4.54	2.11 2.33 1.95 7.40 2.89	1.52 1.34 1.30 1.60 5.09	7.72 2.47 1.62 2.15 1.36 1.00	4.67 3.66 4.73 2.72 2.37 1.65	0.87 0.82 1.04 0.81 0.78 0.92	3.15 2.34 3.49 2.38 0.91 1.26
$ \begin{array}{c} \langle d[q] \rangle \\ \langle d[\sigma] \rangle \\ \\ g(x,Q_0^{\sigma}) \\ \\ d[q] \rangle \\ \langle d[\sigma] \rangle \\ \\ T_3(x,Q_0^{\sigma}) \\ \langle d[q] \rangle \\ \langle d[\sigma] \rangle \\ \\ \langle d[\sigma] \rangle \\ \\ \langle d[\sigma] \rangle \\ \langle d[\sigma] \rangle \\ \langle d[\sigma] \rangle \\ \langle d[\sigma] \rangle \\ \\ \langle d[\sigma] \rangle \\ \\ \langle d[\sigma] \rangle \\ \end{array} $	1.06 1.12 1.41 1.41 1.71 4.83	1.69 1.84 2.32 1.86 2.70 4.54	2.11 2.33 1.95 7.40 2.89	1.52 1.34 1.30 1.60 5.09	7.72 2.47 1.62 2.15 1.36 1.00	4.67 3.66 4.73 2.72 2.37 1.65	0.87 0.82 1.04 0.81 0.78 0.92	3.15 2.34 3.49 2.38 0.91 1.26



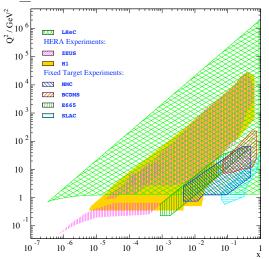
Results - PDF uncertainties

Parton correlations

Compute parton-parton correlations using textbook statistics

$$\rho\left[q(x_1,Q_1^2)\widetilde{q}(x_2,Q_2^2)\right] = \frac{\left\langle q(x_1,Q_1^2)\widetilde{q}(x_2,Q_2^2)\right\rangle_{\mathrm{rep}} - \left\langle q(x_1,Q_1^2)\right\rangle_{\mathrm{rep}} \left\langle \widetilde{q}(x_2,Q_2^2)\right\rangle_{\mathrm{rep}}}{\sigma_q(x_1,Q_1^2)\sigma_{\widetilde{q}}(x_2,Q_2^2)} \;,$$

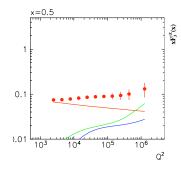
Juan Rojo

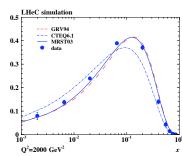

PRECISION QCD AT THE LHeC

References:

J. Dainton et al., *Deep Inelastic Electron-Nucleon Scattering at the LHC*, JINST 1 10001

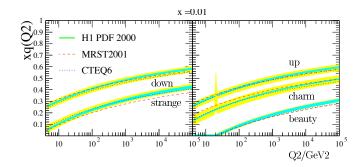
Precision QCD at the LHeC





Constraining proton structure at LHeC

LHeC (+ final HERA data), \rightarrow unprecedent improvement on proton structure determination


- Precision measurements of NC/CC with large electroweak contributions
- $ightharpoonup F_2^{\gamma Z}
 ightarrow ext{Antiquark sea asymmetry} \ (= 2x \left[a_u e_u (U bar U) + a_d e_d (D \bar{D}) \right]$
- \triangleright u/d ratio at large-x
- ▶ Gluon and quark sea down to $x = 10^{-6}$

Constraining proton structure at LHeC

- ▶ Measurement of heavy flavor SFs, $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$ → Important constraints on PDF analysis → Sizable impact on LHC phenomenology (σ_W up by 7% from CTEQ6.1 to CTEQ6.5)
- LHeC potential for very precision heavy flavour measurements

LHeC/LHC interplay

- Accurate determination of PDFs at LHeC could improve the new physics measurements and precision studies at the LHC
- ► Example I: more accurate $g(x,Q^2)$ at small x at LHeC to more accurate $g(x,Q^2)$ at large x (momentum sum rule) \rightarrow More accurate $d\sigma_{\rm jet}/dE_T$ at LHC (window to new physics) + better jet energy scale calibration
- ► Example II: more accurate $F_2^{c\bar{c}}$ at LHeC \rightarrow More accurate $\sigma_{W^{\pm}}, \sigma_Z$ at LHC \rightarrow Luminosity monitors at 1%?

