NEW PHYSICS AT LARGE SCALES

Emmanuelle Perez, CERN Georg Weiglein, IPPP Durham

Divonne, 09/2008

Introduction

- What are we after? Why now?
- Exciting early LHC results may provide us with a window of opportunity to bring a new major facility on the way and in this way to secure a long-term future of the field
- → We need to be in a position to make a wellinformed decision on what is the best option for the future

Goal: a CDR for the LHeC

- Thorough study of physics potential required
- Results need to be compared with the capabilities of the LHC, the ILC, CLIC, ...
- The studies must be sufficiently advanced and realistic to stand the comparison with the analyses carried out for other colliders

A lot of work will be needed to achieve this

LHeC-specific issues

- Ring-Ring (RR) vs. Linac-Ring (LR) option
- RR: energy limited (70 GeV), better prospects for higher luminosity
- LR: energy not physics limited, 140 GeV; which luminosity can be reached with how much electrical power?
- Impact of beam polarisation: e^-, e^+?
- Detector requirements, angular acceptance, ...

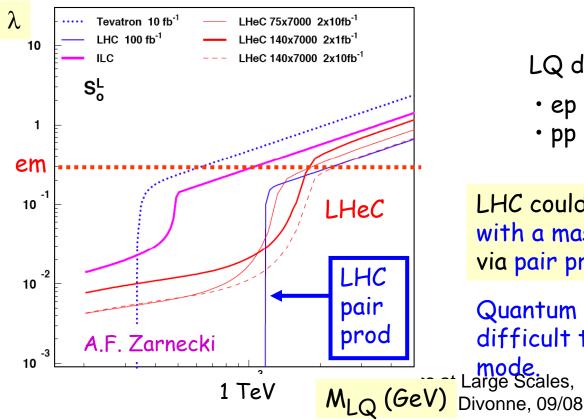
Should we agree on a common set of parameters (energy, integrated lumi, ...) for all studies?

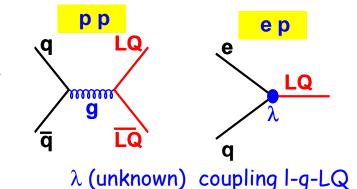
New physics at large scales: what is the physics potential of LHeC?

- Is there potential for new physics studies beyond the eeqq contact interaction (see G. Altarelli's talk)?
- Can new physics be observed at the LHeC that did not show up at the LHC?
- If not, can LHeC + LHC measurements yield added value compared to LHC alone?

New Physics Working Group at Divonne

- Dedicated New Physics session: 4 talks
- Joint session with electroweak WG: 5 talks


Very active sessions, thanks a lot to all contributors!


Definition used in the summary talks: Higgs = new physics Drell-Yan = electroweak

Electron-quark resonances

E. Perez

- "Leptoquarks" (LQs) appear in many extensions of SM
- Scalar or Vector color triplet bosons
- Carry both L and B, frac. em. charge

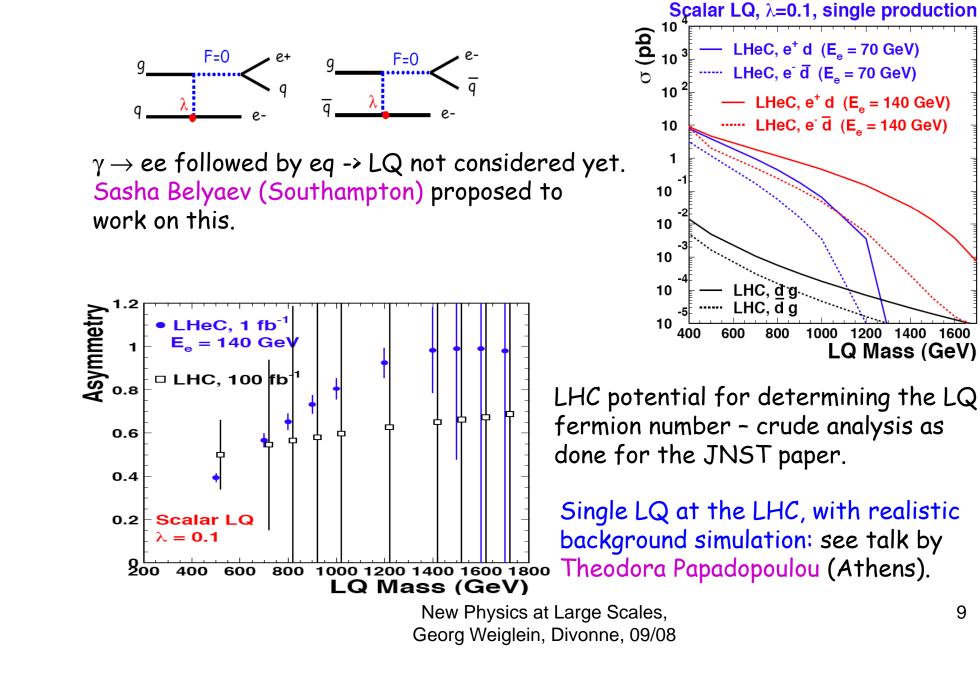
LQ decays into (lq) or (vq) :

- ep : resonant peak, ang. distr.
- pp : high E_T lljj events

LHC could discover eq resonances with a mass of up to 1.5 - 2 TeV via pair production.

Quantum numbers ? Might be difficult to determine in this mode. arge Scales,

ep : golden machine to study LQ properties


E. Perez

F = 0 or 2 ?	Compare rates in e ⁻ p and e ⁺ p
Spin?	Angular distributions
Chiral couplings ?	Play with polarisation of lepton beam
Couples to v ?	Easy to see since good S/B in vj channel

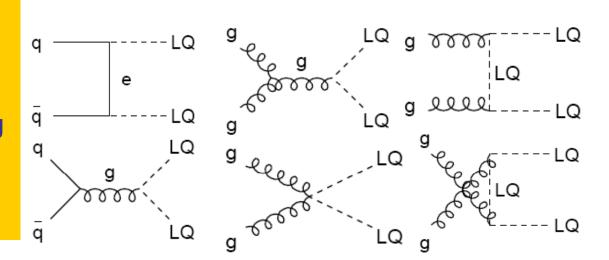
Classification in the table below relies on minimal assumptions. ep observables would allow to disentangle most of the possibilities (having a polarised p beam would complete the picture).

		$S_{0,L}$	$S_{1,L}$	$ ilde{S}_{0,R}$	$S_{0,R}$	$S_{1/2,L}$	$\tilde{S}_{1/2,L}$	$S_{1/2,R}$
\sim	$S_{0,L}$		$eta_ u$	P_{e}	P_{e}			
- 11	$S_{1,L}$	$eta_ u$		P_{e}	P_{e}		at /a=	
Ľ	$ ilde{S}_{0,R}$	P_{e}	P_{e}		P_p		e^+/e^-	
	$S_{0,R}$	P_e	P_e	P_p				
9	$S_{1/2,L}$						P_p	P_e
($ ilde{S}_{1/2,L}$		e^+	$/e^-$		P_p	-	P_e
	$S_{1/2,R}$					P_e	P_{e}	

If LHC observes a LQ-like resonance, M below 1 - 1.5 TeV, LHeC could solve the possibly remaining ambiguities (if λ is not too small)

"LQ spectroscopy" : LHeC versus single LQ production at LHC

E. Perez


9

LQ production at LHC Th. Papadopoulo

- Pair production

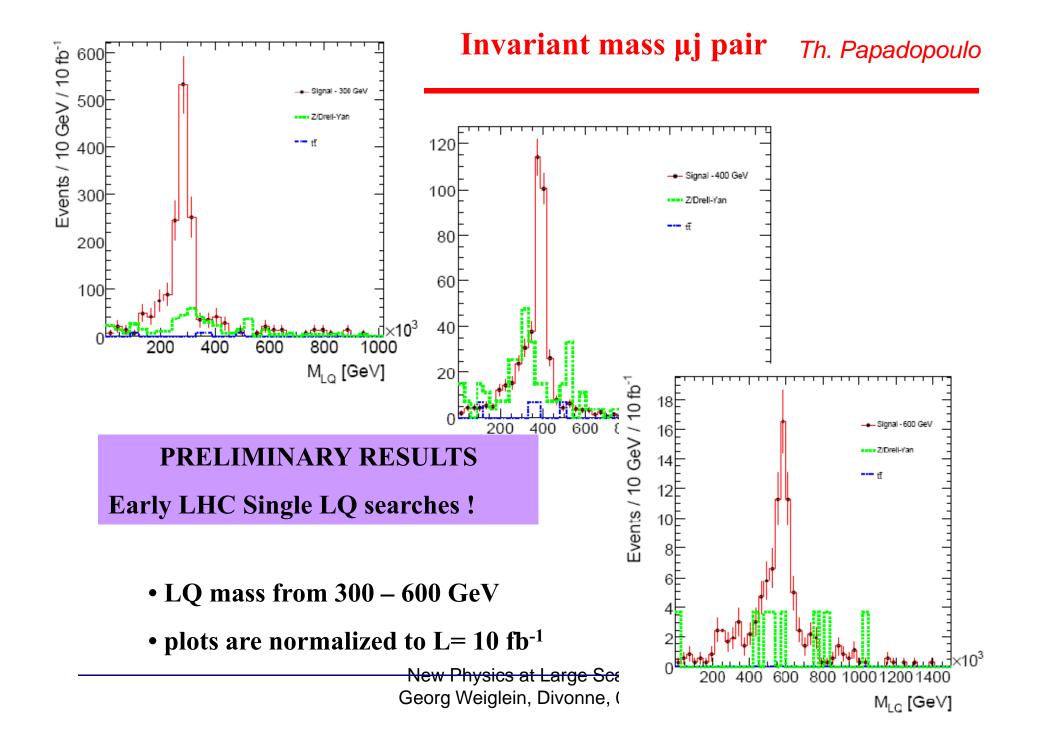
 Practically

 independent of
 Yukawa coupling
 λ
 - Depends mainly on LQ mass

- Single production
 - strongly depends on λ
 - possible signatures:
 - $\ell^+\ell^-$ + jet
 - **ev** + jet
 - vv + iet

***** Both categories (Pair and Single) LQs are complementary for LHC searches

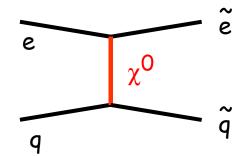
New Physics at Large Scales, Georg Weiglein, Divonne, 09/08 10-


PRELIMINARY RESULTS

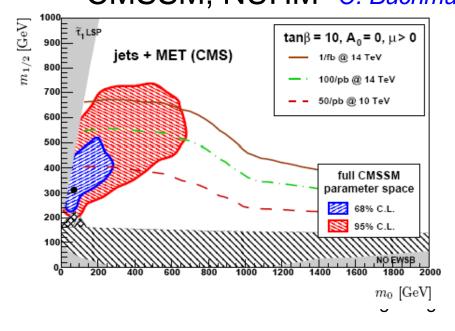
Physics sample	Before cuts	Baseline cuts	$pTmax\mu_{1,2} \ge 100 \text{ GeV}$ $pTmaxj \ge 100 \text{ GeV}$ $b\text{-tag weight} \le 4$	SPT ≥ 500 GeV	Мµµ ≥ 200 GeV	LQ mass window (±25)
MLQ = 400 GeV	3680	2432	666	613	457	402
Z/DY ≥ 150 GeV	72780	33626	689	586	360	118
t tbar	420000?	86581	42	28	28	14

• Single Scalar LQ \rightarrow u μ (Q = -1/3)

•Optimized for the smallest integrated luminosity needed for a discovery with 5σ and normalized for an integrated luminosity of 10 fb⁻¹


• All other background are negligible New Physics at Large Scales, Georg Weiglein, Divonne, 09/08

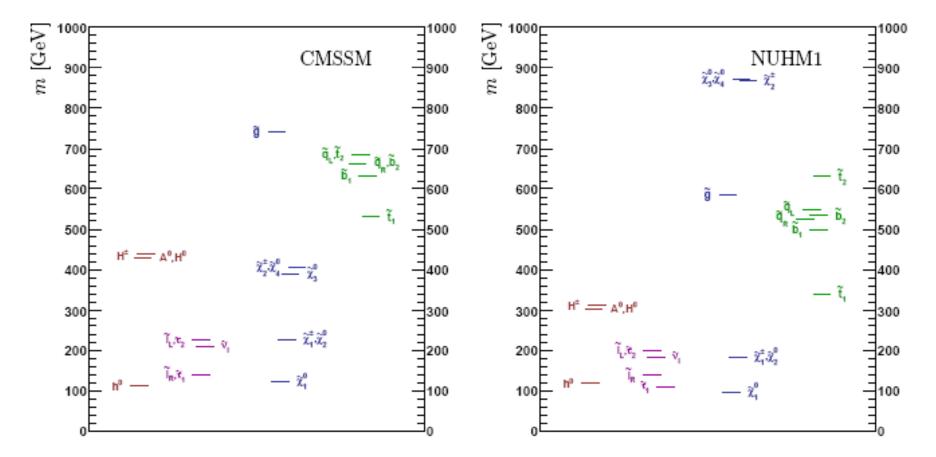
- Pair and Single LQ studies at LHC are complementary
- First studies on Single LQ with ATLAS/LHC are underway towards the final results at early LHC
- Results presented are PRELIMINARY
- Use of the LHC results to predictions for the LHeC are important for the LHeC expectations on the potential of LHeC New physics


Beyond LQs: SUSY with R-parity conservation

Pair production via t-channel exchange of a neutralino.

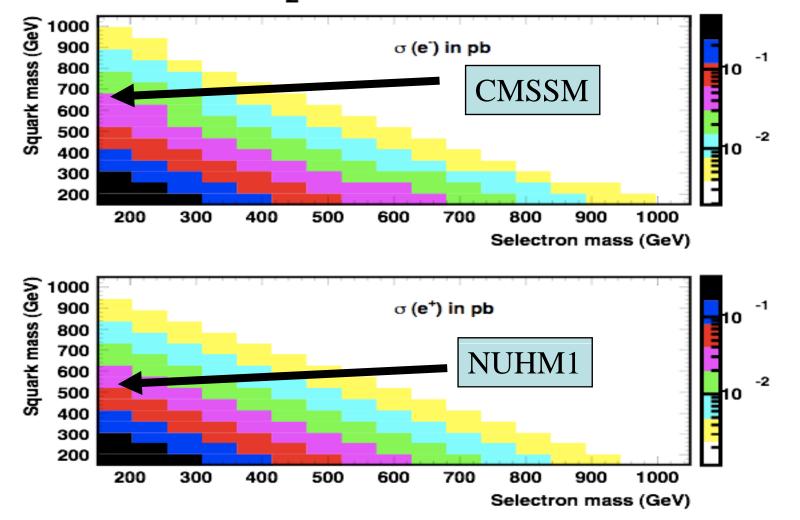
Cross-section sizeable when ΣM below ~ 1 TeV.

Comparison: SUSY fit to ew precision observables, B-physics observables, cosmological constraints: CMSSM, NUHM *O. Buchmueller et al, '08*



Good prospects for early SUSY discovery at the LHC

It Large Scales, , Divonne, 09/08


Spectra of best-fit points: CMSSM and NUHM1

O. Buchmueller et al, '08

Cross section for selectron + squark production at LHeC

O. Buchmueller et al, '08 E. Per tan β = 10, M₂ = 380 GeV, μ = -500 GeV

16

Cross section for selectron + squark production at LHeC

 $\rightarrow \sigma \sim 15$ fb for best fit points

E. Perez

Added value w.r.t. LHC to be studied :

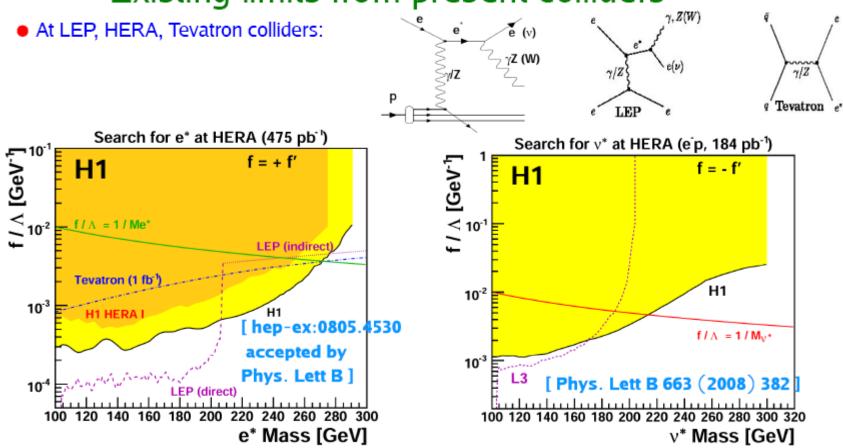
- could extend a bit over the LHC slepton sensitivity
- precise mass measurements
- relevant information on neutralino sector

T. N. Trinh

1st ECFA-CERN LHeC Workshop Divonne-les-Bains, 1-3 September 2008

Single Production of Excited Leptons @ LHeC

T. Nguyet TRINH, Emmanuel SAUVAN Centre de Physique des Particules de Marseille, France

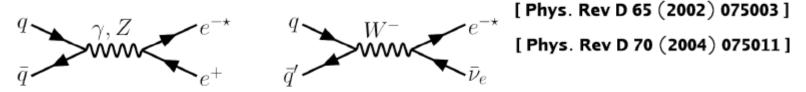

Trinh-CPPM

Excited leptons@LHeC New Physics at Large Scales, Georg Weiglein, Divonne, 09/08

18

1

Existing limits from present colliders



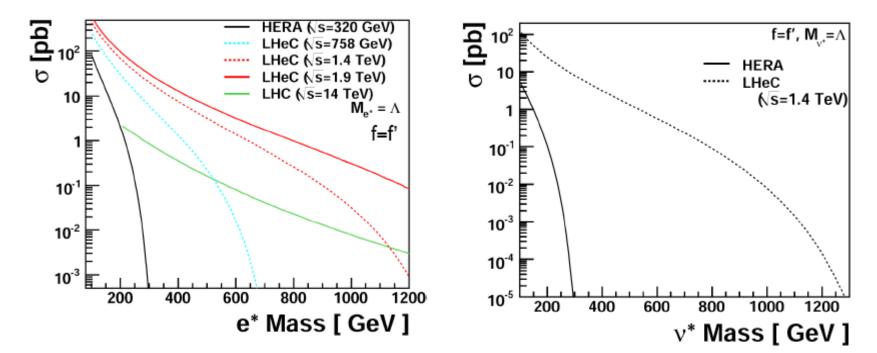
 \mathbf{v}^* at HERA: best sensitivity to masses beyond the LEP reach

• e* at HERA: new H1 limit is more stringent than present LEP or Tevatron results in the intermediate e* mass range

Excited leptons at future LHC, ILC, <u>LHeC</u> colliders

• Single production of excited leptons at LHC collider (with $\sqrt{s=14}$ TeV):

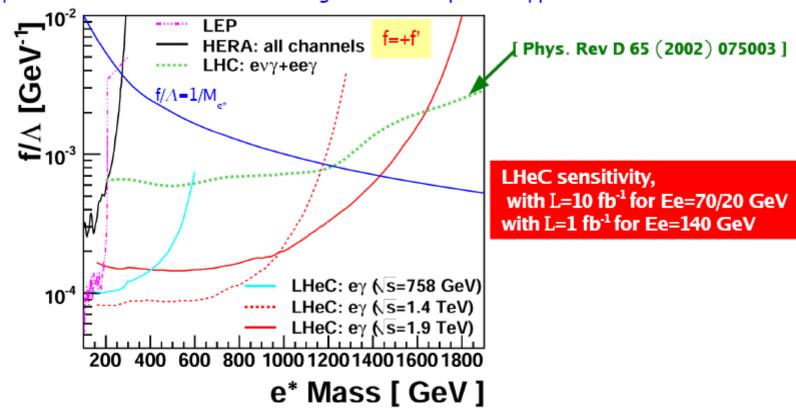
x assuming f=f'=1 and M*= Λ , the LHC will be able to extend considerably the range of excited lepton masses that can be probe up to about <u>1-2 TeV</u>


• At ILC collider (with $\sqrt{s} \sim 500 \text{ GeV}$): [Phys. Rev D 56 (1997) 2920]

v assuming f=f'=1 and $M^*=A$, the ILC can discover excited leptons up to the kinematical limit

• At LHeC collider (with $\sqrt{s} \sim 1.4$ TeV or 758 GeV or 1.9TeV) ?

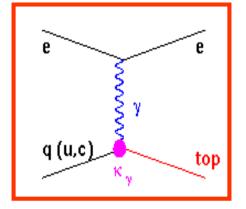
Excited leptons @LHeC


• Total cross section for I* productions through GM interaction at LHeC, assuming $M^*=A$

comparison with HERA and LHC

Expected limit at 95% C.L

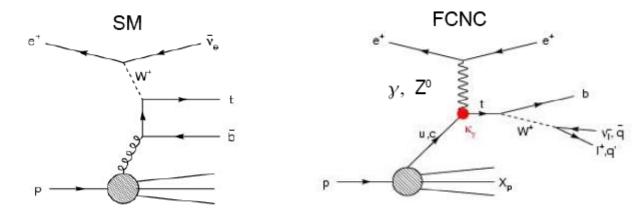
• Expected limits derived at 95% C.L using Modified Frequentist Approach

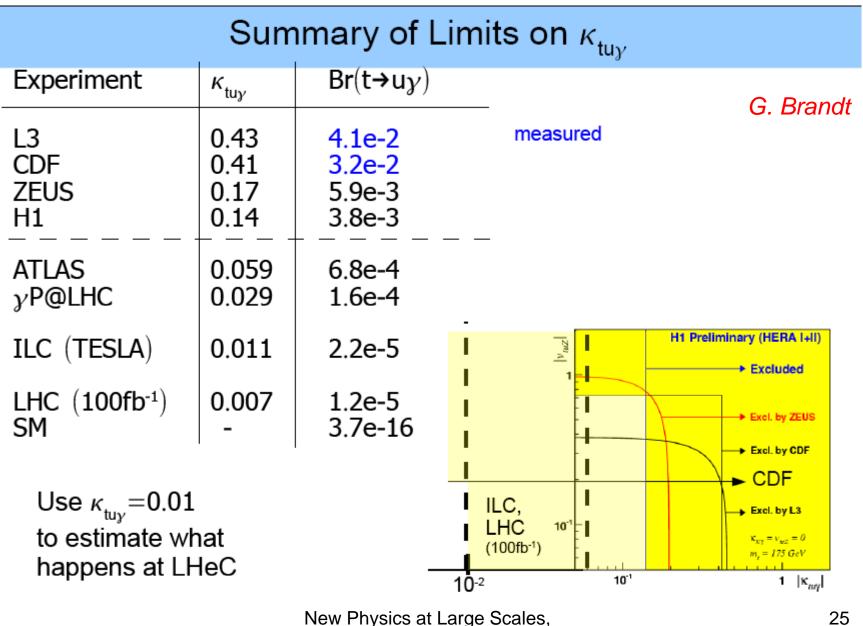

- **X** At LHeC, if f/ Λ =1/M_{e*}and f=f': M_{e*} < 1.2 (1.5) TeV are excluded, for \sqrt{s} =1.4 (1.9) TeV
- **At LHC, if f**/ Λ =1/M_{*} and f=f': M_{*} < ~1.2 TeV are excluded
 - Expected sensitivity of LheC is more stringent than others colliders

Anomalous top production

Models which predict new effects

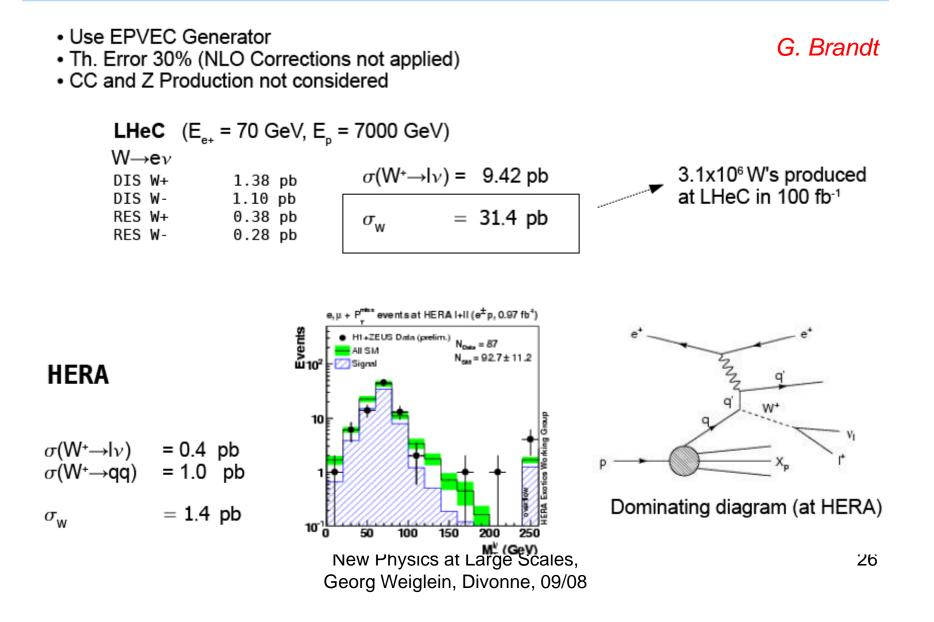
- "easy" to see in ep because of low, well-understood backgrounds
- more difficult to establish in pp because of large bckgs


Example from HERA experience: Anomalous top production via BSM coupling tuy


Anomalous top production

G. Brandt

- top Production (SM and FCNC) very interesting
 - M_{top} close to EWSB scale, sensitive to BSM
 - If BSM associated with mass generation, top especially sensitive
- Extensive top Programs at TeVatron, planned at LHC
- In *ep* collisions at HERA ($\sqrt{s} = 320 \text{ GeV}$)
 - SM: top production kinematically possible, but small cross section
 - FCNC: Excellent handle on anomalous tuy coupling competitive limits
 - What about LHeC?



Georg Weiglein, Divonne, 09/08

SM *W* Production in *ep* Collisions

G. Brandt

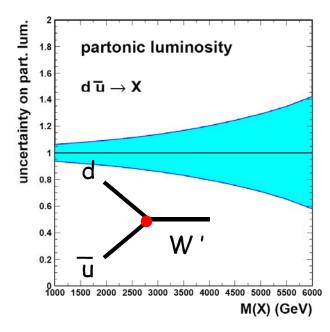
SM Single top Cross Sections in ep Collisions

	HERA [fb]	LHeC(E [pb]	_e =70 x E _p =7000)	e* VW'
PYTHIA 6.4 CTEQ6I CTEQ6m GRV98 (lo) MRST2002nlo PYTHIA 6.1 GRV LO	0.39 1.19 0.02 0.86 0.97	1.62	• Use PYTHIA with Process q _i + f _j -> Q _k + f _j	P dominating
COMPHEP CTEQ6L CTEQ6D CTEQ6M CTEQ5L	0.42 2.13 1.27 0.71	1.93 2.40 2.3 2.0	 Sensitive to "b-der Not well constrained 	• •
Wt 51 Top pair production	5 ± 27 pb 0.2 ± 0.7pb ± 9 pb	LHeC • σ ~ 2	2 pb⁻¹	THERA (E_e =500 x E_p =920) (E. Perez) $\sigma \sim 1 \text{ pb}^{-1}$
Sigma (pp->tt) 833	3 pb	•	at Large Scales, n, Divonne, 09/08	27

Finally: Estimations at LHeC

$N = C_{\gamma} \cdot \kappa_{tu\gamma}^{2}$	•	L	•	Br	•	ε
\sim						
σ						

G. Brandt


Option	Ee [GeV]	Ep [GeV]	Int. Lumi [fb]	$\sigma(\kappa_{\rm tuy}=0.01)~[{\rm pb}]$	N _{obs}	
LHeC (RR)	70	7000	100	0.0152 31.4 2	760 94000 10000	FCNC top SM W SM top
LHeC (LR)	140	7000	10	0.0207 pb	103	

- Very difficult to help with FCNC top production at LHeC
- Large W sample, can measure cross-section, Mass, polarisations, WW $_{\gamma}$, ...
- Large SM single top sample, nice top program possible -> ideas in backup
- If FCNC has strength of current HERA limit, SM and FCNC are of the same order of magnitude at LHeC: FCNC top σ(κ_{tuy}=0.14) = 3.0 pb⁻¹
 Higher energy LHeC LR option would not compensate lower lumi
 - (Estimates for W, SM top not done...)

Proton structure and interpretation of LHC discoveries

• We may need more precise pdf's :

Example: new W', resonant slepton production in RpV SUSY

(DIS'07)

E. Perez

40% uncertainty on part. lum. for a 6 TeV W '. Translates into an uncertainty on the coupling of the W'.

Idem for the couplings of a new Z' close to the kinematic limit.

Higgs production at LHeC

S. A. Koay

Higgs \rightarrow **b** \overline{b} **Prospects** at the LHC

> Sue Ann Koay [UCSB], 2nd September 2008 Material from CMS NOTE-2006/119, FP420 Design Report (and elsewhere)

New Physics at Large Scales, Georg Weiglein, Divonne, 09/08 1

Prospects for assessing the Hbb coupling at the LHC

ttH, H -> bb and diffractive Higgs production

Both are very challenging

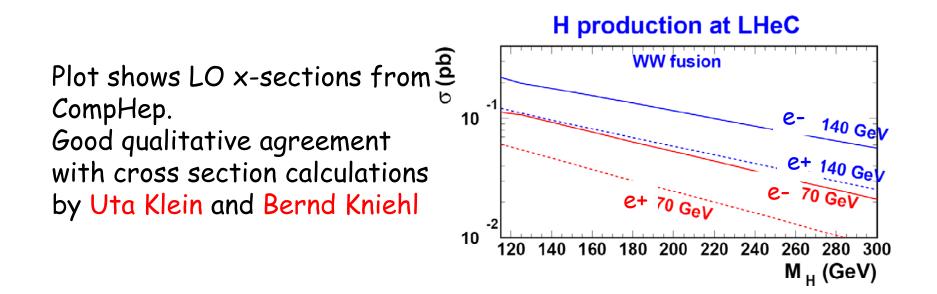
Is there a chance at the LHeC?

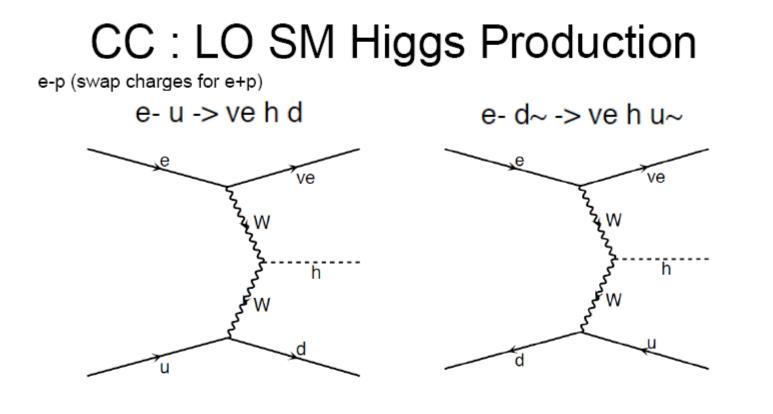
S. A. Koay ttH, $H \rightarrow bb$ at the LHC

The Verdict in 60 fb ⁻¹			St JES, jet	u c d s		
_				, .		► H→bb̄ Prospe
	m _H (GeV/c²)	S	S/B (%)	S/√B	S/√(B+dB²)	MSSM
						ttH @ CMS
ron	115	350	2.0	2.6	0.07	All hadroni
Had	120	310	1.8	2.4	0.07	Semi-lepto
All-Hadron	130	210	1.2	1.6	0.05	Di-leptonic FP420
						Overview
oton	115	147	7.0	3.1	0.20	CEP of H \rightarrow
i-le	120	118	5.3	2.5	0.16	
Semi-lepton	130	80	3.6	1.7	0.11	
0,						
ton	115	170	1.8	1.8	0.10	
Di-lepton	120	130	1.5	1.4	0.08	
Ġ	130	82	0.9	0.9	0.05	
•						_

ects nic onic С ∍bb 18

Reality happened : systematics ~ 18% – 34%

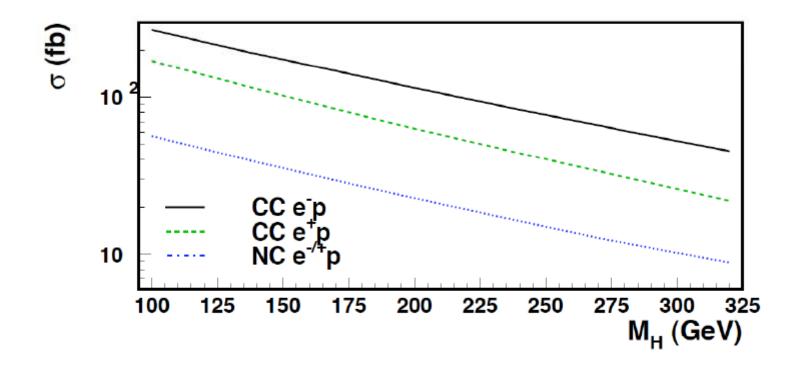

inew Physics at Large Scales, Georg Weiglein, Divonne, 09/08


τ b

Higgs production at LHeC

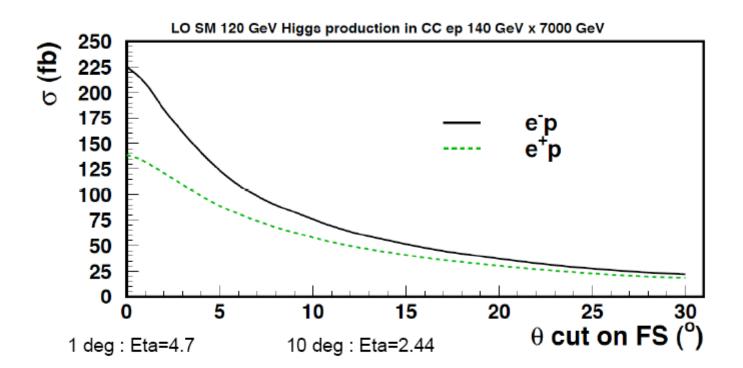
E. Perez

Production cross-section for a 120 GeV Higgs at LHeC (Ee = 140 GeV) is sizeable.



around 90-80%

around 10-20%


140 GeV x 7000 GeV

U. Klein

Effect of Detector Acceptance

· Apply eta cuts on ALL final states

Some Thoughts

- The SM Higgs cross sections are sizeable.
- LHeC may open an unique access to light Higgs via bbar via ZZ and WW fusion
- May we profit from e-beam polarization?
- Tag the Higgs via bbar (75%)
 -> Check topologies, bbar tagging efficiencies...
- HO contributions for signal and background ?
- Background : jets in CC, single top...

M. Kuze

Backgrounds to Higgs production at the LHeC

Masahiro Kuze Tokyo Institute of Technology Emmanuelle Perez CERN

LHeC WS, Divonne-les-Bains, 2/Sep/2008

(with a lot of help from J. Maeda, K. Nagano and H. Spiesberger)

Cross section with M. Kuze parton-level cuts (Ee⁻=140GeV, MH=115GeV)

missPt> Pt(b)>	25GeV	50GeV	75GeV
20GeV	0.099	0.063	0.037
40GeV	0.057	0.037	0.023

(in pb; b-jet angle cut of $10 < \theta < 170$ applied.)

Georg Weiglein, Divonne, 09/08

M. Kuze

Background study

- Generate DJANGOH Q²>400GeV²
 CC events at LHeC energy, run through ZEUS detector MC.
- 140GeV e⁻p. σ_{tot} = 383.31 pb.
 10,000 events (very CPU consuming...)
- Run kt jet-finder, cut on missPt and Pt(jets) (jet |η|<3), count events in dijet-mass bin (M_H±width).
- Compare w/ signal (parton-level cut), calculate S/N and S/√N (for L=10fb⁻¹)

M. Kuze

Width=10GeV, LHeC 10fb⁻¹

missPt>	25GeV	50GeV	75GeV
Pt(jet)>	23067	5000	75060
20GeV	990/39098	630/26065	370/16482
	S/N=0.025	S/N=0.024	S/N=0.022
	S/√N=5.0	S/√N=3.9	S/√N=2.9
40GeV	570/17632	370/12266	230/7666
	S/N=0.032	S/N=0.030	S/N=0.030
	S/√N=4.3	S/√N=3.3	S/√N=2.6

post-Remark

- Yesterday, I learned that 10fb⁻¹ (1yr@10³³) with Ee=140GeV may be `ultimate goal'.
- For L=1fb⁻¹ (1yr@10³²) and 140GeV:
 S→1/10, N→1/10: S/N→same, S/√N→1/3
- For Ee=70GeV and 10fb⁻¹: S→~1/2, N→~0.7(?) (CC σ_{tot}=280.16pb) (MC generation needed for actual dijet bg)

Summary

- A very preliminary look at CC bgd to light Higgs production at the LHeC.
- Mass bump could be seen (5.0 sigma), but tough N/S (>30) for coupling study?
- MissPt slope is similar. Hard cut on Pt(jet) improves S/N (but worsens S/√N)
- More thoughts on cuts needed.
 b-tag (vertex), forward jet, ... (signal MC!)
- Photoproduction and other bgd sources?

Conclusions

- Many ideas, encouraging level of activities
- Interesting studies have been started
- But: still a long way to go towards a CDR
- Dates for the diary: CERN Theory Institute: "From the LHC to a Future Collider", Feb. 9-27, 2009