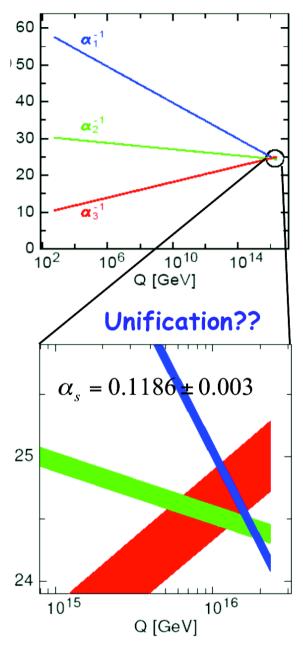
Prospects of α_s determinations in DIS

Thomas Kluge

1st ECFA-CERN LHeC Workshop Divonne 1-3 September 2008

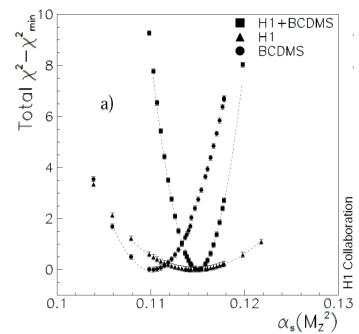


Motivation

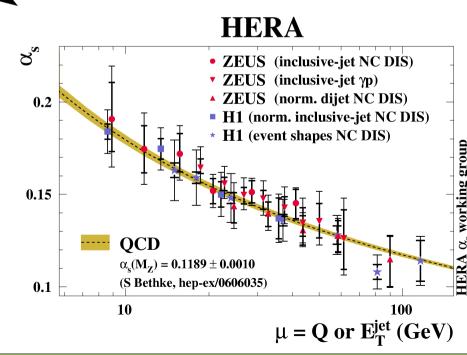
 $\alpha_{\!_{s}}\!$: free parameter of QCD strength of a fundamental force

important to know $lpha_{_{\mathrm{S}}}$ precisely

- affects almost any cross section in high energy collisions
- need to know QCD "background" precisely to discover new physics
- validation of Grand Unification of Forces?



hep-ph/0407067 B.Allanach ... P.Zerwas


Role of DIS

II. final states

- complementary to other determinations
 - many observables & scales
- competitive precision (at high energies)
 - exp. error of 2-3% (theo. 3-5%)

Structure Functions

H1 analysis of gluon density and $lpha_{_{\! s}}$

Eur.Phys.J.C21:33-61,2001

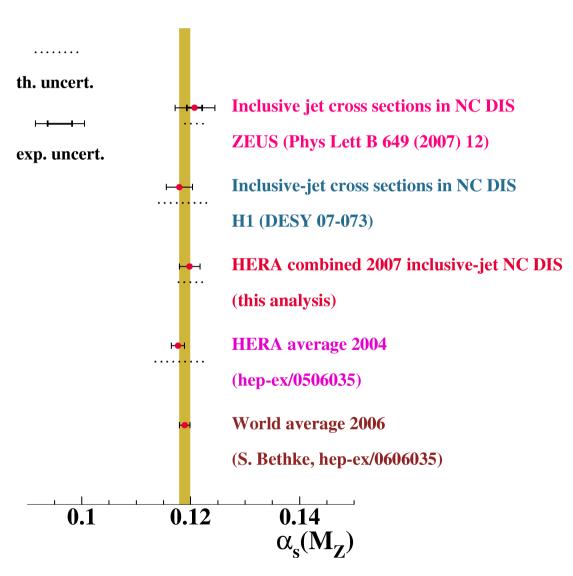
$$\alpha_s(M_Z^2) = 0.1150 \pm 0.0017 \, (exp) \, {}^{+~0.0009}_{-~0.0005} \, (model) \, \pm 0.005 \, \, {
m scale} \, \, {
m NLO}$$

- using H1 96/97 and BCDMS data
- 1.5% exp. error (4.5% w/o BCDMS)
- new data in the pipeline
 - twice the luminosity
 - improved systematics
 - expect precision of ~<1%
 - H1/ZEUS combination ~0.8%?

analysis uncertainty	$+\delta \alpha_s$	$-\delta \ \alpha_s$
$Q_{min}^2 = 2 \text{ GeV}^2$		0.00002
$Q_{min}^2 = 5 \text{ GeV}^2$	0.00016	
parameterisations	0.00011	
$Q_0^2 = 2.5 \mathrm{GeV^2}$	0.00023	
$Q_0^2 = 6 \text{ GeV}^2$		0.00018
$y_e < 0.35$	0.00013	
x < 0.6	0.00033	
$y_{\mu} > 0.4$	0.00025	
$x > 5 \cdot 10^{-4}$	0.00051	
uncertainty of $\overline{u} - \overline{d}$	0.00005	0.00005
strange quark contribution $\epsilon = 0$	0.00010	
$m_c + 0.1 \mathrm{GeV}$	0.00047	
$m_c - 0.1 \mathrm{GeV}$		0.00044
$m_b + 0.2\mathrm{GeV}$	0.00007	
$m_b - 0.2 \mathrm{GeV}$		0.00007
total uncertainty	0.00088	0.00048

HERA prospects

H1/ZEUS combinations


HERA average 2007 total error <3%

■ incl. jets at high Q²

$$\alpha_s(M_Z) = 0.1198 \pm 0.0019 \text{ (exp.)} \pm 0.0026 \text{ (th.)}$$

- gp jets
- normalised jet cross sections

LHeC prospects

beam energies center of mass energy		HERA 27.6 x 920 GeV ² 320 GeV
int. luminosity angular acceptance tracking resolution EM energy scale HAD energy scale luminosity	10 fb ⁻¹ 1-179° 0.1mrad 0.1% 0.5% 0.5%	1 fb ⁻¹ 7-177° 0.2-1mrad 0.2-0.5% 1% 1%

QCD fits to LHeC toy data, determination of $\alpha_{\!_{\rm S}}$

Fit á la H1 2000 PDF, leave $\alpha_{\!_{s}}$ free

LHeC "data" smeared by assumed error around H1 fit

LHeC Fits

- 70 x 7000 GeV², 10 fb⁻¹ for e⁺ and e⁻ each
- NC & CC inclusive cross section
- stat. error forced >0.1%
- total error typical O(1%) per Q²-x bin
- lacktriangle uncorrelated syst.: efficiencies, γp background, noise
- \blacksquare correlated syst.: E(e'), θ (e'), E(hadrons)
- 0.5% normalisation uncertainty whereof 0.25% correlated between datasets (NC/CC, e+/e-)

LHeC Fits

<u>DATA</u>	<u>exp. error on $lpha_{ m s}$</u>
NC e ⁺ only	0.48%
NC & CC	0.41% $0.23% := (1)$
$\gamma_h>5^\circ$	0.36% := (2)
(1) +BCDMS	0.22%
(2) +BCDMS	0.22%
(1) stat. *= 2	0.35%

- \blacksquare seems possible to reach \sim 2‰ error (adequate detector provided)
- BCDMS data can help with forward acceptance
- with 20 fb⁻¹ statistics is not a major issue

Outlook

- lacktriangle HERA results on $lpha_{_{
 m S}}$ from structure functions and HFS in the pipeline
- H1/ZEUS combinations will result in the final HERA numbers
 - expect experimental error of ~<1%
 - can theory catch up? NNLO for heavy flavour, jets?
- In first studies indicate that the LHeC has the potential for O(2‰) experimental uncertainty on $\alpha_{_{\! s}}$
 - obviously very challenging for the detector
 - again, theory/model error will need major effort

Backup