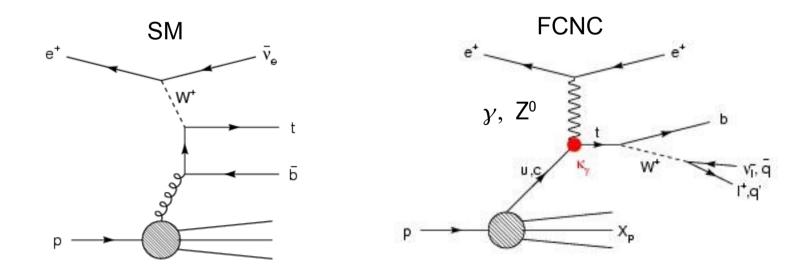


Single Top Production at LHeC

Gerhard Brandt (DESY)

contributions from Hayk Pirumov (Yerevan), Cristi Diaconu (CPPM)


- Anomalous FCNC top Production
 - Introduction
 - Existing Constraints
 - Expectations at LHC, ILC
- W Production at LHeC
- Single top Production at LHeC
- Expectations at LHeC

1st ECFA-CERN LHeC Workshop 1-3 September 2008, Divonne-les-Bains, France

Motivation

- top Production (SM and FCNC) very interesting
 - M_{top} close to EWSB scale, sensitive to BSM
 - If BSM associated with mass generation, top especially sensitive
- Extensive top Programs at TeVatron, planned at LHC
- In *ep* collisions at HERA (\sqrt{s} = 320 GeV)
 - SM: top production kinematically possible, but small cross section
 - FCNC: Excellent handle on anomalous tu γ coupling competitive limits
 - What about LHeC?

Phenomenology

Following

Use effective Lagrangian

T. Han and J. L. Hewett, Phys. Rev. D 60, 074015 (1999)

Simple story considered here:
$$\mathcal{L}_{eff}^{FCNC} = \sum_{U=u,c} \frac{ee_U}{2\Lambda} \kappa_{tU\gamma} \bar{t} \sigma_{\mu\nu} A^{\mu\nu} U$$

- Take care of different conventions used by different experiments / theorists
- Impact on coupling ~O(1), like $e_u = 2/3$, $1/\sqrt{2}$ for q=u,c or u only
- Scale $\Lambda = m_{t} = 175 \text{ GeV}$ (in lit. sometimes 1 TeV used!)
- Assume $V_{tuz} = 0$ for now
- Neglect c-quark for now: $\kappa_{tcy} = \kappa_{tcZ} = 0$

Keep in mind the

Full Story:

Magnetic and (V-A) couplings for Z

$$-\mathcal{L}^{\text{eff}} = \frac{g}{2c_W} X_{qt} \bar{q} \gamma_\mu (x_{qt}^L P_L + x_{qt}^R P_R) t Z^\mu + \frac{g}{2c_W} \kappa_{qt} \bar{q} (\kappa_{qt}^v + \kappa_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^\nu}{m_t} Z^\mu + e\lambda_{qt} \bar{q} (\lambda_{qt}^v + \lambda_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^\nu}{m_t} T^\mu A^\mu + g_s \zeta_{qt} \bar{q} (\zeta_{tq}^v + \zeta_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^\nu}{m_t} T^a d G^{a\mu} + \frac{g}{2\sqrt{2}} g_{qt} \bar{q} (g_{qt}^v + g_{qt}^a \gamma_5) t H + \text{H.c.}, \qquad \text{J.A. Aguilar-Saavedra,} \\ \text{ActaPhys.Polon.B35:2695-2710,2004.}$$

Top Decay Widths

with

• If Branching Fractions are measured, convert to coupling via decay widths

$$BR(t \to bW^{+}) = \frac{\Gamma_{t \to bW^{+}}}{\Gamma_{t \to bW^{+}} + \Gamma_{t \to u\gamma} + \Gamma_{t \to uZ}}$$
$$BR(t \to u\gamma) = \frac{\Gamma_{t \to u\gamma}}{\Gamma_{t \to bW^{+}} + \Gamma_{t \to u\gamma} + \Gamma_{t \to uZ}}$$
$$BR(t \to uZ) = \frac{\Gamma_{t \to uZ}}{\Gamma_{t \to bW^{+}} + \Gamma_{t \to u\gamma} + \Gamma_{t \to uZ}}$$

$$\Gamma_{t \to bW^+} = w_{SM}$$

$$\Gamma_{t \to u\gamma} = w_{\gamma} \cdot \kappa_{tu\gamma}^2$$

$$\Gamma_{t \to uZ} = w_Z \cdot v_{tuZ}^2,$$

• For small values of the anomalous couplings use $\Gamma_{tot} = \Gamma_{t-bW+}$

Thesis D. Dannheim (2003)

$M_{\rm top}~({\rm GeV})$	w_{SM} (MeV)	$w_{\gamma} ({ m MeV})$	$w_Z \ ({ m MeV})$
170	1404	293	1297
175	1554	302	1449
180	1713	310	1610

- Analytical expressions for decay widths given in literature
- Dependencies the same, conventions mostly different
- Use values used by H1/ZEUS for the HERA-1 Papers

FCNC top Production Cross Sections in ep

• Cross section for anomalous top production in ep collisions can be expressed as

$\sigma_{ m single \ top} = c_{\gamma} \cdot$	$\kappa_{tu\gamma}^2 + c_Z$	Inter (~ 1	$\cdot \kappa_{tu\gamma} \cdot v_{tuZ}$. ference term small % of total cross section at HERA), lected here
	c_{y} [pb]	c _z [pb]	using
HERA (this study) ZEUS (D. Dannheim) Ee Ep	6.4 6.1	0.25 0.23	LO, ANOTOP (2->4) LO, CompHEP
LHeC(70x7000) LHeC(140x7000)	152 207	16.8 23.	LO, ANOTOP (2->4) LO, ANOTOP (2->4)
γP at LHC THERA (E. Perez) (500x920)	368 336		

- Factors $c_{y_1} c_z$ contain all conventions, NLO corrections, different cme
- If $k_{tuy} = v_{tuZ} Z$, Z relatively more important at LHeC (11% vs. 4% at HERA)

Uncertainties on FCNC top Production in ep

- NLO Corrections of ~20% at HERA energies (H1 HERA-1 Paper: 17%)
- Cross Section $\pm 25\%$ with $m_{top} = 175 \text{ GeV} \pm 5 \text{ GeV}$
- Pdfs impact at LheC? (x-distribution shown later)
- Use of correct conventions...

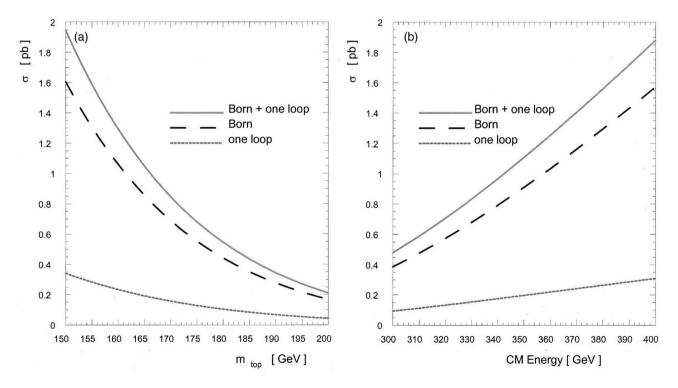


FIG. 3. Born, one-loop, and Born plus one-loop cross section for the FCNC single topquark production at the DESY HERA collider with $Q = m_{top}$ and $\kappa_{tuy} = 0.1$ vs (a) the topquark mass with \sqrt{S} = 318 GeV and (b) the c.m. energy with $m_{top} = 175$ GeV.

Belyaev, Kidonakis

Existing Limits on $\kappa_{tq_{\gamma}}$

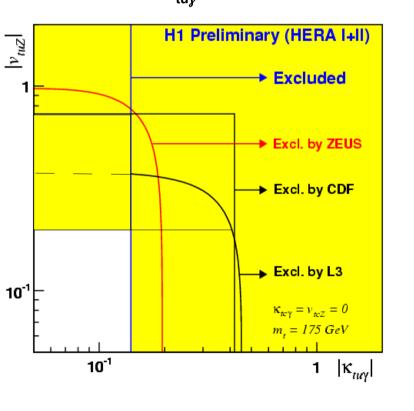
 $\kappa_{tq_{\gamma}}$ B(t -> q_{\gamma}) < 3.2%

CDF

(Run I, 110pb⁻¹) tt-> bW q γ

(Run II, 1.9fb⁻¹) tt-> bW qZ (qqqqll)

$$V_{tqZ} B(t \rightarrow qZ) < 3.7\% 95\% CL$$


HERA σ(p -> etX) < 0.16 pb κ_{tuν} < **0.14**

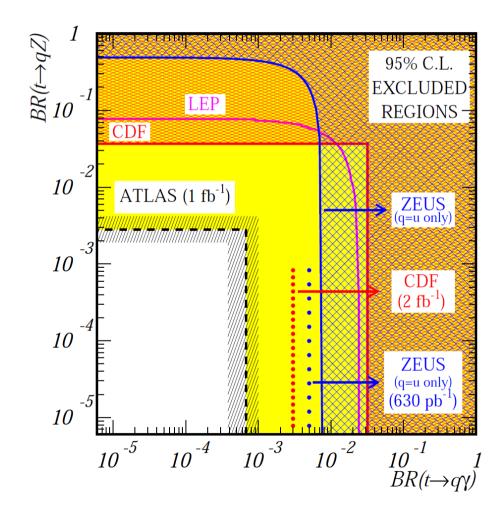
LEP

- √s = 188.6 206.6 GeV
 - Single top kinematically possible
 - top Pair-Production not possible
- Look at decays only
- Cannot discern γ ,Z

B(t > qZ) < 13.7% $B(t > q\gamma) < 4.1\%$

- e
- Branching Fractions are the Measured observables
- L3 method to convert to coupling gives slightly stricter results
- Here use our own method to ensure consistency

Study of ATLAS Sensitivity to FCNC top decays


Taken from

Top Quark Physics at ATLAS CSC Note (Draft!)

Scenario: 1 fb⁻¹, 95% CL

			,
	-1σ	Expected	$+1\sigma$
$t\bar{t} \rightarrow$	bWqγ:		
e	$4.3 imes10^{-4}$	$1.1 imes 10^{-3}$	$1.9 imes10^{-3}$
μ	$4.5 imes10^{-4}$	$8.3 imes 10^{-4}$	$1.3 imes10^{-3}$
ℓ	$3.8 imes10^{-4}$	$6.8 imes 10^{-4}$	$1.0 imes10^{-3}$
$t\bar{t} \rightarrow$	bWqZ:		
3e	$5.5 imes10^{-3}$	$9.4 imes10^{-3}$	$1.4 imes10^{-2}$
3μ	$2.4 imes10^{-3}$	$4.2 imes 10^{-3}$	$6.4 imes10^{-3}$
3ℓ	$1.9 imes10^{-3}$	$2.8 imes10^{-3}$	$4.2 imes 10^{-3}$
$t\bar{t} \rightarrow$	bWqg:		
e	$1.3 imes10^{-2}$	$2.1 imes 10^{-2}$	$3.0 imes10^{-2}$
μ	$1.0 imes10^{-2}$	$1.7 imes10^{-2}$	$2.4 imes10^{-2}$
ℓ	$7.2 imes 10^{-3}$	$1.2 imes 10^{-2}$	$1.8 imes 10^{-2}$

Previous version available: Eur. Phys. J. C 52, 999-1019 (2007) arXiv:0712.1127v1 [hep-ex]

CMS

CMS TDR Vol. 2 CMS Note 2006/093

"5-sigma discovery limits" at L=10 fb⁻¹ -> difficult to compare

 $Br(t->qZ) < 11.4 \times 10^{-4}$ (w/o syst.) $Br(t->q_{y}) < 5.7 \times 10^{-4}$

SM:

Br(t->sW)=10⁻³ Br(t->dW)=10⁻⁴-10⁻⁵

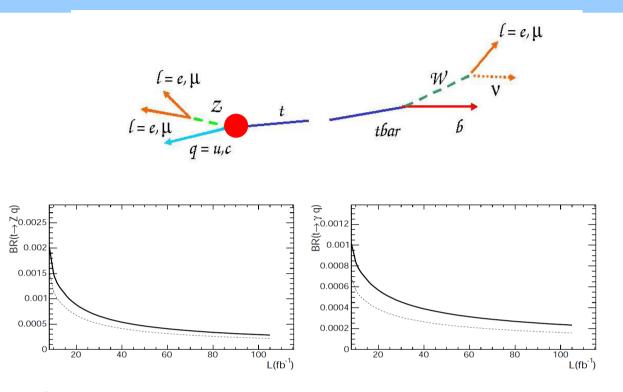
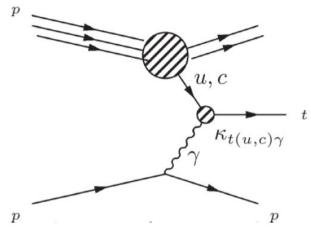



Figure 25: The branching ratios of FCNC top decays as a function of integrated luminosity, for $t \rightarrow qZ$ (left) and $t \rightarrow q\gamma$ (right), assuming a 5-sigma discovery level. These curves are based on the values given in the text, which correspond to an integrated luminosity of L=10 fb⁻¹. The two curves represent the branching ratios including (solid line) and excluding (dashed line) the contribution from systematic uncertainties.

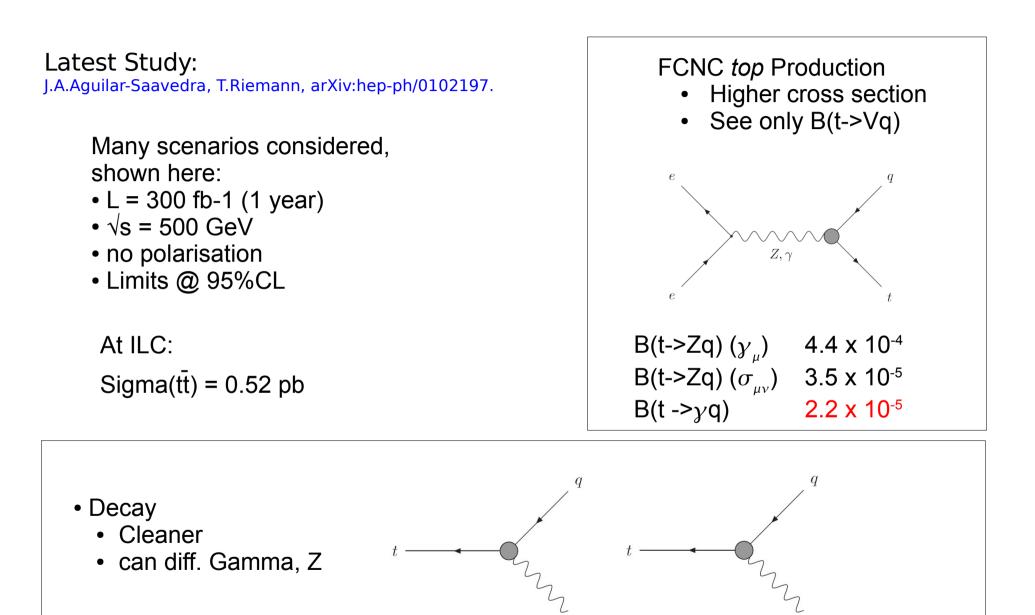
Photoproduction at LHC

- Idea to exploit Photoproduction at the LHC
- Measure Production, similar to HERA

S. Ovyn, J.d.Favereau (U.C.Louvain) Arxiv 0806.4841 (hep-ph), 0806.4886 (hep-ph)

Tag with LRG (very low lumi) Large Rapidity Gap

Tag intact proton with VFD (low lumi)


Prospects for 1 fb⁻¹ 95% CL

Very low luminosity : $k_{tu\gamma} < 0.044$, $k_{tc\gamma} < 0.077$, Low luminosity : $k_{tu\gamma} < 0.029$, $k_{tc\gamma} < 0.050$.

Convenient to compare (same conventions like HERA)

$$\sigma_{pp \to t} = 368 \text{ pb} \times k_{tu\gamma}^2 + 122 \text{ pb} \times k_{tc\gamma}^2.$$

ILC (TESLA)

 $B(t->qZ) < 1.8 \times 10^{-3}$

Z

 $B(t-\gamma q) < 9.9 \times 10^{-5}$

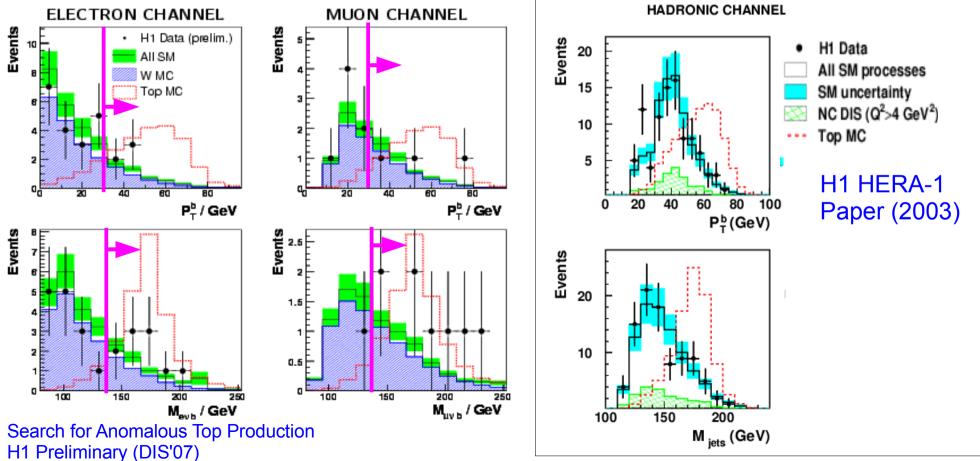
G.Brandt - Single Top at LHeC

Summary of Limits on κ_{tuy}

	1		ίαγ
Experiment	$\kappa_{\mathrm{tu}_{\mathcal{Y}}}$	Br(t→u _Y)	
L3 CDF ZEUS H1	0.43 0.41 0.17 0.14	4.1e-2 3.2e-2 5.9e-3 3.8e-3	measured
ATLAS γ P@LHC	0.059 0.029	6.8e-4 1.6e-4	
ILC (TESLA)	0.011	2.2e-5	H1 Preliminary (HERA I+II)
LHC $(100 fb^{-1})$ SM	0.007	1.2e-5 3.7e-16	Excl. by ZEUS
Use $\kappa_{tuy} = 0.01$ to estimate whe happens at LH	nat	_	$\frac{ \text{LC}, \\ \text{LHC}}{(100 \text{fb}^{-1})} = 10^{-1} = 10^{-1} = 10^{-1}$

Reminder: Background to FCNC top at HERA

HERA

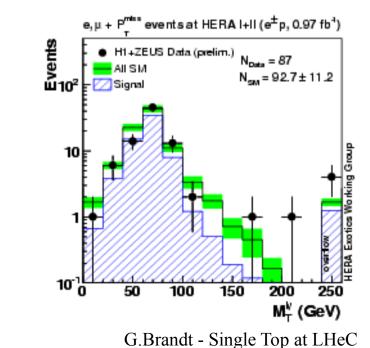

Semi-Leptonic Channels (e, mu)

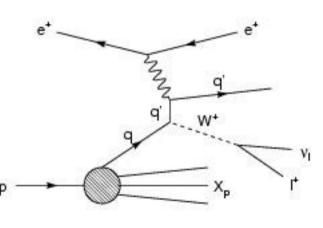
- Main Background from SM W Production
- Top in region $P_T b > 30 \text{ GeV}$, $M_{top} > 140 \text{ GeV}$

Cut based top selection: $\varepsilon \approx 40\%$

Hadronic Channel

- Main Background from Jets in Photoproduction and DIS
- Not considered for now




G.Brandt - Single Top at LHeC

SM W Production in ep Collisions

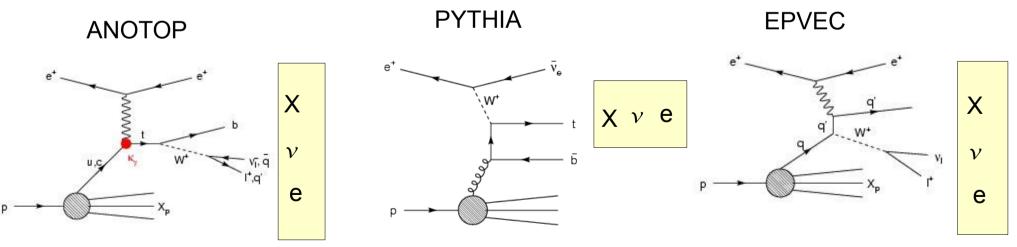
- Use EPVEC Generator
- Th. Error 30% (NLO Corrections not applied)
- CC and Z Production not considered

LHeC
$$(E_{e^+} = 70 \text{ GeV}, E_p = 7000 \text{ GeV})$$

 $W \rightarrow e_{V}$
DIS W+ 1.38 pb
DIS W+ 1.10 pb
RES W+ 0.38 pb
RES W- 0.28 pb $\sigma(W^+ \rightarrow I_V) = 9.42 \text{ pb}$
 $\sigma_W = 31.4 \text{ pb}$
 $\sigma_W = 31.4 \text{ pb}$

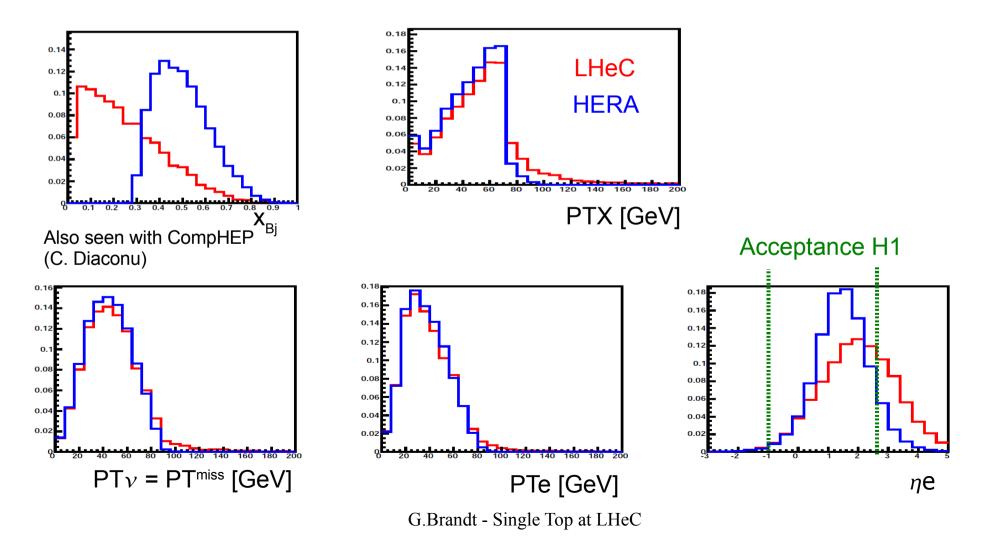
Dominating diagram (at HERA)

$$\begin{array}{ll} \sigma(\mathsf{W}^* {\rightarrow} \mathsf{I}_{\mathcal{V}}) &= 0.4 \ \mathrm{pb} \\ \sigma(\mathsf{W}^* {\rightarrow} \mathsf{qq}) &= 1.0 \ \mathrm{pb} \\ \sigma_{\mathsf{W}} &= 1.4 \ \mathrm{pb} \end{array}$$

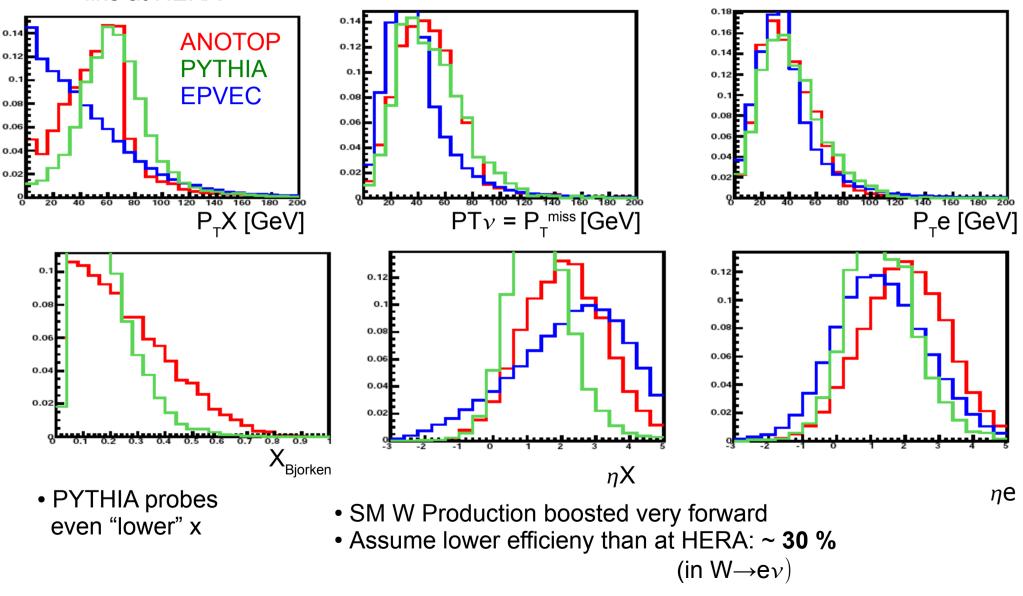

SM Single top Cross Sections in ep Collisions

	HERA [fb]	LHeC (E _e =70 x E _p [pb]	=7000)	e^+ $\bar{\nu}_e$ $\dot{\nu}_W^+$
PYTHIA 6.4 CTEQ6I CTEQ6m GRV98 (lo) MRST2002nlo PYTHIA 6.1 GRV LO	0.39 1.19 0.02 0.86 0.97	1.62 • Use Proc	e PYTHIA with cess q _i + f _j -> Q _k + f _i	P → → → → → → → → → → → → → → → → → → →
CompHEP CTEQ6L CTEQ6D CTEQ6M CTEQ5L	0.42 2.13 1.27 0.71	2.40 • Se 2.3 • No	$\sim 1 \text{fb}^{-1} - \text{not ol}$ ensitive to " <i>b</i> -dens of well constrained	bservable in ~ 1 fb ⁻¹ sity" in <i>p</i> at x > 0.3 d suring this quantity?)
Wt 51 Top pair production	5 ± 27 pb 0.2 ± 0.7pb	LHeC • $\sigma \sim 2 \text{ pb}^{-1}$		THERA (E_e =500 x E_p =920) (E. Perez) $\sigma \sim 1 \text{ pb}^{-1}$

Kinematics Comparisons HERA / LHeC


A very brief look at kinematics to estimate efficiencies

- Use Generator files only
- Assume we are looking for anomalous top production
- Look at $W \rightarrow e_{V}$ channel only
- Generous acceptance for stable particles: $-3.0 < \eta < 5.0$
- Smear generated particles
 - Had. Energy: $50\%/\sqrt{E} \oplus 4\%$ (Jets, Neutrino)
 - Em. Energy: $10\%/\sqrt{E} \oplus 1\%$ (Electron)
- Take sum of gen. Jets (= Total HFS) as *b*-jet Candidate
- No isolation / distances required
- No *b*-tagging used
- Look at shapes only


ANOTOP Kinematics HERA / LHeC

- Top probes lower x_{Bi} at LHeC (*c*-density should not be neglected)
- In transverse plane very similar kinematics for top at HERA and LheC ($P_{\tau}^{top} \approx 0$)
- Electron, X more forward at LheC: Lower acceptance?
 - Assume LHeC detector can measure down to $\eta = 5.0 \dots$
 - For now use same efficiency for HERA / LHeC of 40% (in $W \rightarrow e_{\nu}$)

Kinematics of FCNC top, SM top, SM W at LHeC

- PTX main discriminant between W and *top*, like at HERA
- ANOTOP and PYTHIA kinematically similar
- X in PYTHIA more central, assume efficiency of **50%**

G.Brandt - Single Top at LHeC

Finally: Estimations at LHeC

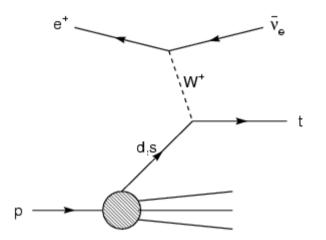
N = 0	$\mathbf{C}_{\mathbf{y}} \cdot \mathbf{\kappa}_{\mathrm{tu}\mathbf{y}}^{2} \cdot \mathbf{L}$	$\cdot \mathbf{Br} \cdot \varepsilon$				
Outien						1
Option	Ee [GeV]	Ep[Gev]	Int. Lumi [fb]	$\sigma(\kappa_{tuy}=0.01)$ [pb]	N _{obs}	
LHeC (RR)	70	7000	100	0.0152 31.4 2	760 94000 10000	FCNC top SM W SM top
LHeC (LR)	140	7000	10	0.0207 pb	103	

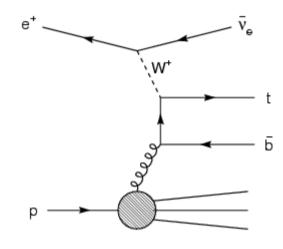
- Very difficult to help with FCNC top production at LHeC
- Large W sample, can measure cross-section, Mass, polarisations, WW $_{\mathcal{Y}}$, ...
- Large SM single top sample, nice top program possible -> ideas in backup
- If FCNC has strength of current HERA limit, SM and FCNC are of the same order of magnitude at LHeC: FCNC top $\sigma(\kappa_{tuy}=0.14) = 3.0 \text{ pb}^{-1}$
- Higher energy LHeC LR option would not compensate lower lumi (Estimates for W, SM top not done...)

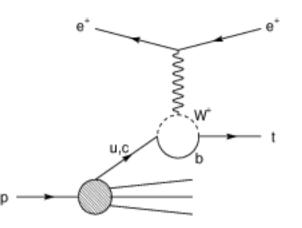
BACKUP / NOTES

2HDM

MSSM with RPV


Exotic extra quarks

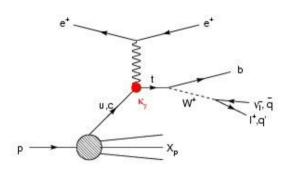

Unparticles

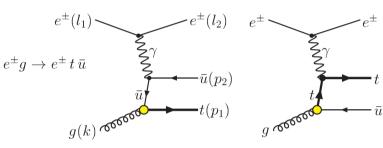

Table 1: Branching ratio predictions for FCNC top quark decays from the SM and from four SM extensions, with the corresponding current experimental limits.

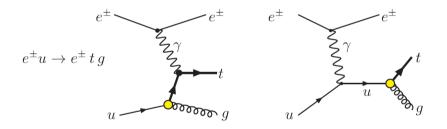
	SM	2HDM	SUSY	SUSY with R	Exotic quarks	Exp. Limits (95% CL)
$BR(t \to qg)$	5×10^{-11}	$\sim 10^{-5}$	$\sim 10^{-6}$	$\sim 10^{-3}$	$\sim 5 \times 10^{-4}$	0.29 (CDF)
$BR(t \to q\gamma)$	5×10^{-13}		$\sim 10^{-8}$	$\sim 10^{-5}$	$\sim 10^{-5}$	0.0059 (ZEUS)
$BR(t \to qZ)$	$\sim 10^{-13}$	$\sim 10^{-6}$	$\sim 10^{-8}$	$\sim 10^{-4}$	$\sim 10^{-2}$	0.14 (LEP2)

SM Top Production in *ep* Collisions

Probe V_{td} , V_{ts}


Probe b-quark density


Limits on ktg

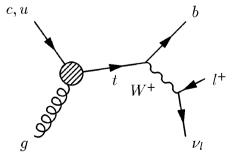

from kt_{γ}

- Possible to interpret FCNC top production via $kt_{\mathcal{Y}}$ as FCNC via ktg
- Set limits on ktg
- HERA: Br(t->gq) < 13%, ktg/lambda < 0.4 TeV⁻¹

e-Print: hep-ph/0604119

At TeVatron

D0 h


Phys.Rev.Lett.99:191802,2007. hep-ex/0702005

Using single top Analysis

kcg\∕1 < 0.15 TeV⁻¹

kug\∕1 < 0.037 TeV⁻¹

G.Brandt - Single Top at LHeC

M. Hosch et al. Phys. Rev. D 56, 5725 - 5730 (1997)

Phenomenology of Anomalous top Couplings

T. Han and J. L. Hewett, Phys. Rev. D 60, 074015 (1999)

$$\mathcal{L}_{eff}^{FCNC} = \sum_{U=u,c} \frac{ee_U}{2\Lambda} \kappa_{tU\gamma} \bar{t} \sigma_{\mu\nu} A^{\mu\nu} U + \frac{g}{2\cos\theta_W} \bar{t} \left[\gamma_\mu (v_{tUZ} - a_{tUZ}\gamma^5) U Z^\mu + \frac{1}{2\Lambda} \kappa_{tUZ} \sigma_{\mu\nu} Z^{\mu\nu} U \right] + \text{h.c.}$$

Take care of different conventions used
Impact would be factors ~O(1), like e_u = 2/3, on coupling

Use effective Lagrangian

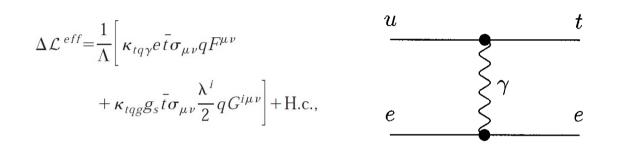
ZEUS (D. Dannheim)

$$\Delta \mathcal{L}_{\text{eff}} = e \ e_t \ \bar{t} \ \frac{i\sigma_{\mu\nu}q^{\nu}}{\Lambda} \ \kappa_{tu\gamma} \ u \ A^{\mu} + \frac{g}{2\cos\theta_W} \ \bar{t} \ \gamma_{\mu} \ v_{tuZ} \ u \ Z^{\mu} + \text{h.c.},$$

Most general effective Lagrangian

J.A. Aguilar-Saavedra, ActaPhys.Polon.B35:2695-2710,2004.

Couplings of q=u,c to V = γ, Z, g, H


$$-\mathcal{L}^{\text{eff}} = \frac{g}{2c_W} X_{qt} \bar{q} \gamma_\mu (x_{qt}^L P_L + x_{qt}^R P_R) t Z^\mu + \frac{g}{2c_W} \kappa_{qt} \bar{q} (\kappa_{qt}^v + \kappa_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^\nu}{m_t} t Z^\mu$$

$$+ e\lambda_{qt} \bar{q} (\lambda_{qt}^v + \lambda_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^\nu}{m_t} t A^\mu + g_s \zeta_{qt} \bar{q} (\zeta_{tq}^v + \zeta_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^\nu}{m_t} T^a q G^{a\mu}$$

$$+ \frac{g}{2\sqrt{2}} g_{qt} \bar{q} (g_{qt}^v + g_{qt}^a \gamma_5) t H + \text{H.c.},$$

G.Brandt - Single Top at LHeC

Lagrangian Collection ...

ILC

$$-\mathcal{L} = \frac{g_W}{2c_W} X_{tq} \bar{t} \gamma_\mu (x_{tq}^L P_L + x_{tq}^R P_R) q Z^\mu + \frac{g_W}{2c_W} \kappa_{tq} \bar{t} (\kappa_{tq}^v - \kappa_{tq}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^\nu}{m_t} q Z^\mu + e \lambda_{tq} \bar{t} (\lambda_{tq}^v - \lambda_{tq}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^\nu}{m_t} q A^\mu ,$$

Decay Width Collection

$$\begin{split} \Gamma(t \to qg) &= \left(\frac{\kappa_{tq}^{\gamma}}{\Lambda}\right)^2 \frac{8}{3} \alpha_s m_t^3, \\ \Gamma(t \to q\gamma) &= \left(\frac{\kappa_{tq}}{\Lambda}\right)^2 2\alpha m_t^3, \\ \Gamma(t \to qZ)_{\gamma} &= \left(|v_{tq}^Z|^2 + |a_{tq}^Z|^2\right) \alpha m_t^3 \frac{1}{4M_z^2 \sin^2 2\theta_W} \left(1 - \frac{m_z^2}{m_t^2}\right)^2 \left(1 + 2\frac{m_z^2}{m_t^2}\right) \\ \Gamma(t \to qZ)_{\sigma} &= \left(\frac{\kappa_{tq}^Z}{\Lambda}\right)^2 \alpha m_t^3 \frac{1}{\sin^2 2\theta_W} \left(1 - \frac{m_z^2}{m_t^2}\right)^2 \left(2 + \frac{m_z^2}{m_t^2}\right), \\ \Gamma(t \to qZ)_{\sigma} &= \left(\frac{\kappa_{tq}^Z}{\Lambda}\right)^2 \alpha m_t^3 \frac{1}{\sin^2 2\theta_W} \left(1 - \frac{m_z^2}{m_t^2}\right)^2 \left(2 + \frac{m_z^2}{m_t^2}\right), \\ \Gamma(t \to qZ)_{\sigma} &= \left(\frac{\kappa_{tq}^Z}{\Lambda}\right)^2 \alpha m_t^3 \frac{1}{\sin^2 2\theta_W} \left(1 - \frac{m_z^2}{m_t^2}\right)^2 \left(2 + \frac{m_z^2}{m_t^2}\right), \\ \Gamma(t \to qZ)_{\sigma} &= 0.472 X_{qt}^2, \\ \Gamma_{t \to qZ} &= 760 \text{ MeV} \\ \Gamma(t \to qZ)_{\sigma} &= 0.472 X_{qt}^2, \\ \Gamma_{t \to qZ} &= 760 \text{ MeV} \\ \Gamma(t \to qZ)_{\sigma} &= 0.367 \kappa_{qt}^2, \\ \Gamma_{t \to qY} &= 690 \text{ MeV} \\ \Gamma(t \to qZ) &= 7.93 \zeta_{qt}^2, \\ \Gamma(t \to qH) &= 3.88 \times 10^{-2} g_{qt}^2. \end{split}$$

$$\Gamma(t \to c\gamma) = \kappa_{\gamma}^{2} \frac{\alpha e_{q}^{2}}{4} \left(\frac{m_{t}^{2}}{\Lambda^{2}}\right) m_{t},$$

$$\Gamma(t \to cZ) = \kappa_{z}^{2} \frac{\alpha}{8 \sin^{2} 2 \vartheta_{W}} M_{Z}^{2} m_{t}^{3} \left(1 - \frac{M_{Z}^{2}}{m_{t}^{2}}\right)^{2} \left(1 + 2\frac{M_{Z}^{2}}{m_{t}^{2}}\right)^{2} \left(1 + 2\frac{M_{Z}^{2}}{m_{t}^{2}}\right) \frac{\text{Obraztsov et al.,}}{\text{Single Top at LHeC}}$$

$$\Gamma(t \to cZ) = \kappa_{z}^{2} \frac{\alpha}{8 \sin^{2} 2 \vartheta_{W}} M_{Z}^{2} m_{t}^{3} \left(1 - \frac{M_{Z}^{2}}{m_{t}^{2}}\right)^{2} \left(1 + 2\frac{M_{Z}^{2}}{m_{t}^{2}}\right) \frac{\text{Obraztsov et al.,}}{\text{Single Top at LHeC}}$$

26

SM

$$BR(t \to c\gamma) = 4.6 \times 10^{-14}$$
$$BR(t \to u\gamma) = 3.7 \times 10^{-16}.$$

J. A. Aguilar-Saavedra, B. M. Nobre (IST Lisbon) Phys.Lett. B553 (2003) 251-260

- SM Single Top
 - Cross Sections + Kinematics
 - HERA, LHC, ILC
 - LHeC
- Theory for anomalous couplings
 - 2HDM
 - MSSM (RPV)
 - Unparticles
 - Effective L
- Conversion coupling <-> Br
- FCNC in production (coupling)
 - HERA
 - LHC in Photoproduction
- FCNC in decay (Br)
 - CDF, D0
 - ATLAS, CMS

ATLAS Note Conversions

Initially stressed by Fritzsch, Holtmannspoetter Phys.Lett. B457 (1999) 186-192

Conversion Br <-> Couplings <-> Widths <-> XSec

• FCNC top Production: Measure Cross Section

```
Xsec -> Coupling -> Decay Width -> Br
```

• FCNC Top Decays: Measure Branching Ratio

Br -> Width -> Coupling -> Xsec

- For comparable Results, all assumptions / conventions must be the same
- Strategy:
 - Take measured quantities
 - Do conversions ourselves using our conventions