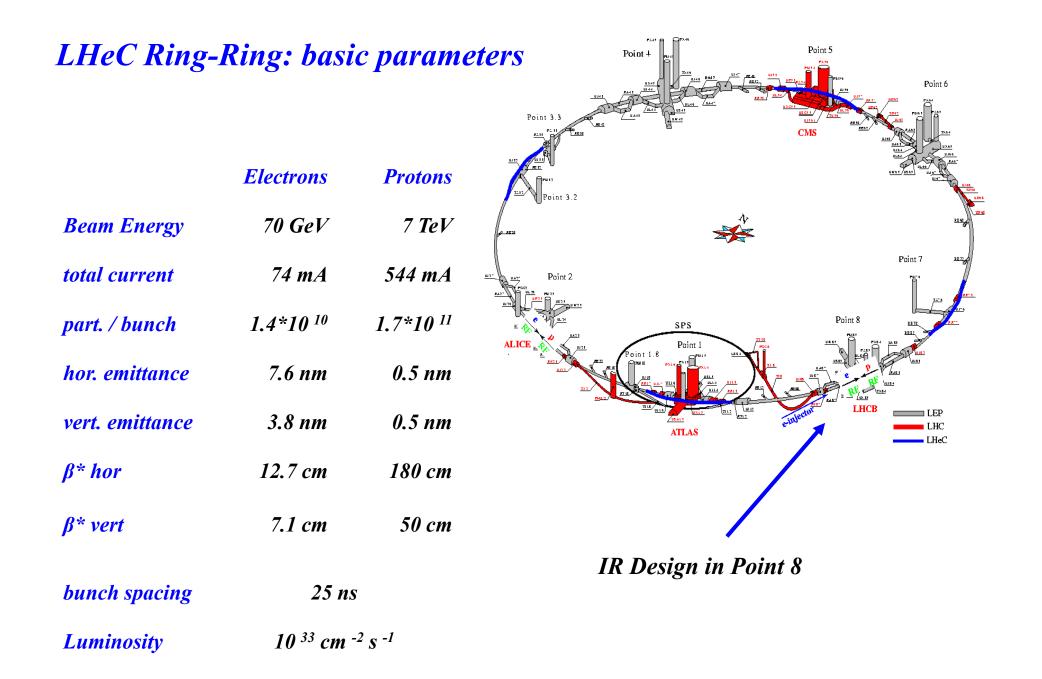
Interaction Region Design of the LHeC Ring / Ring Version Bernhard Holzer

DESY 06-006 Cockcroft-06-05


Deep Inelastic Electron-Nucleon Scattering at the LHC^{*}

J. B. Dainton¹, M. Klein², P. Newman³, E. Perez⁴, F. Willeke²

 ¹ Cockcroft Institute of Accelerator Science and Technology, Daresbury International Science Park, UK
 ² DESY, Hamburg and Zeuthen, Germany
 ³ School of Physics and Astronomy, University of Birmingham, UK
 ⁴ CE Saclay, DSM/DAPNIA/Spp, Gif-sur-Yvette, France

Abstract

The physics, and a design, of a Large Hadron Electron Collider (LHeC) are sketched. With high luminosity, 10^{33} cm⁻²s⁻¹, and high energy $\sqrt{s} = 1.4$ TeV, such a collider can be built in which a 70 GeV electron (positron) beam in the LHC tunnel is in collision with one of the LHC hadron beams and which operates simultaneously with the LHC. The LHeC makes possible deep-inelastic lepton-hadron (*ep*, *eD* and *eA*) scattering for momentum transfers Q^2 beyond 10^6 GeV² and for Bjorken *x* down to the 10^{-6} . New sensitivity to the existence of new states of matter, primarily in the lepton-quark sector and in dense Quantum Chromodynamics, is achieved. The precision possible with an electron-hadron experiment brings in addition crucial accuracy in the determination of hadron structure and of parton dynamics at the TeV energy scale. The LHeC thus complements the proton-proton and ion programmes, adds substantial new discovery potential to them, and is important for a full understanding of physics in the LHC energy range.

1.) highly asymmetric Beam Energies Electrons 70 GeV

--> separate storage rings,

--> focusing of proton beam only after complete beam separation ... but "ASAP" !!! integrated quadrupole strength at first p-quad: \[Gdl =

--> fast beam separation needed early and compact focusing scheme required for electron beam

combine focusing of e-beam and e/p beam separation

--> and don't forget about the synchrotron radiation background

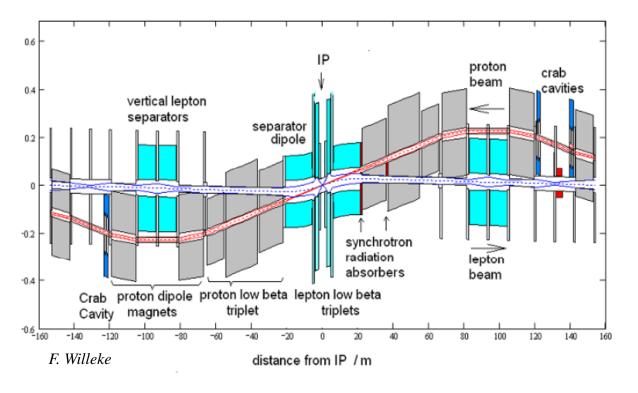
synchrotron radiation calculations detector layout & absorber design focusing of both beams separation scheme

have to be treated in an coordinated way.

ion

Protons

7 **Te**V


$$\int Gdl = 127 \frac{T}{m} * 13.5 m = 1715 T$$

Bernhard Holzer, DESY/CERN

2.) IR layout is dominated by the separation scheme

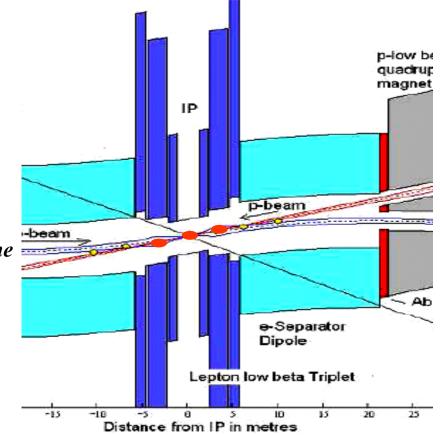
well known ... HERA- I & II, KEK & SLAC B-factories

spectrometer effect: use dipole fields to separate the beams according to their momentum. ... don't loose too much space: \rightarrow shift the quadrupole triplett in horizontal plane

Implications on the e-optics: quadrupole offsets depend on the gradient optics & orbit are not independent.

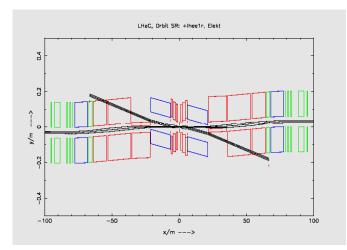
Bernhard Holzer, DESY/CERN

IR Design: Beam Separation Scheme


fast beam separation needed crossing angle to support early separation

LHC bunch distance:25 ns = 7.5 m1st parasitic crossing:3.75m

first e-quad: positioned at s = 1.2m ... too late for sufficient beam separation


separation has "to start at the IP"

--> support the off-centre-quadrupole separation scheme by crossing angle at the IP.

IR Design: Beam Separation Scheme

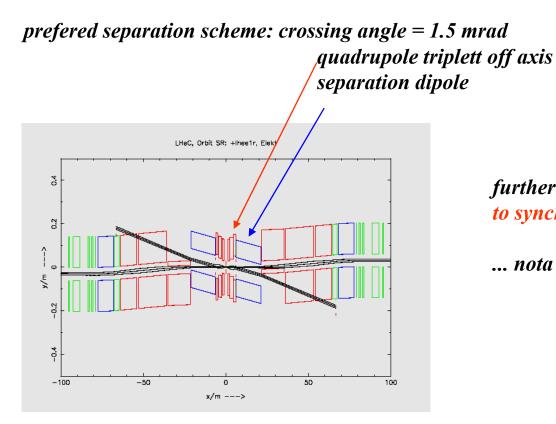
crossing angle & quadrupole separation

program to calculate the beam optics (10 σ), calculate the electron orbit, align the e-quads to the e-beam (min. synchrotron rad.) track the p-beam through the e-quads optimise the beam separation according to crossing angle and separation fields

S	ϵ_x / ϵ_y	β_{x}	β_y	$\sigma_{\rm x}$	$\sigma_{\rm x}$	
3.75m	5*10 ⁻¹⁰ rad m	10m	24m	0.07mm	0.11mm	р
	7.6 nm / 3.8 nm	135m	98m	1.01mm	0.61mm	e

separation requirement: dominated by e-beam dimensions

$$10\sigma + 10\sigma = 0.7mm + 10.1mm \approx 11mm$$


$$\rightarrow X - angle = 2.9mrad$$

$$5\sigma + 5\sigma = 0.35 mm + 5 mm \approx 5.5 mm$$

 $\rightarrow X - angle = 1.5 mrad$

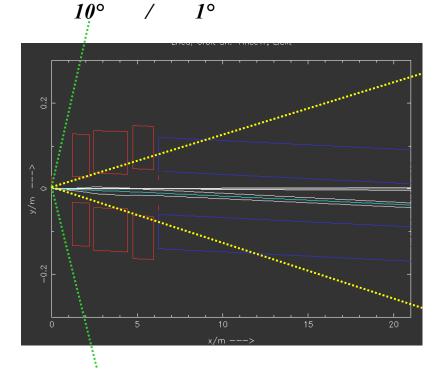
Bernhard Holzer, DESY/CERN

LHeC Lattice Design

IR Design: Beam Separation Scheme

const. bending radius: $\rho = 26315 m$

further optimiation possible: large contribution to synchrotron radiation from focusing fields


... nota bene: ρ (arc dipoles) = 3060 m

* separation at first proton magnet (half quadrupole) 37mm
* synchrotron light calculations done for x-angle of 0.5mrad and 1.5 mrad keeping the overall separation constant.
* crab cavities needed

LHeC Lattice Design

3.) Detector Acceptance: the opening angle ... an old story

two options discussed at the moment:

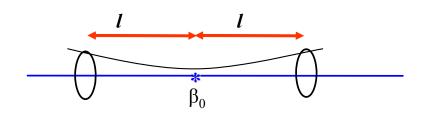
compact magnet design required:

10° = 21 cm outer radius of Q1E quadrupole 1° = requires an alternative lattice, optics and luminosity

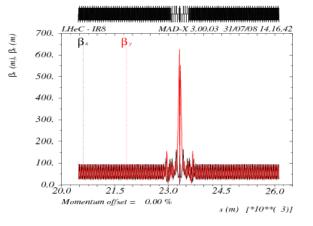
1985 ARGUS Detector with low beta quadrupole

Example: compact magnet design at HERA II

Bernhard Holzer, DESY/CERN


LHeC Lattice Design

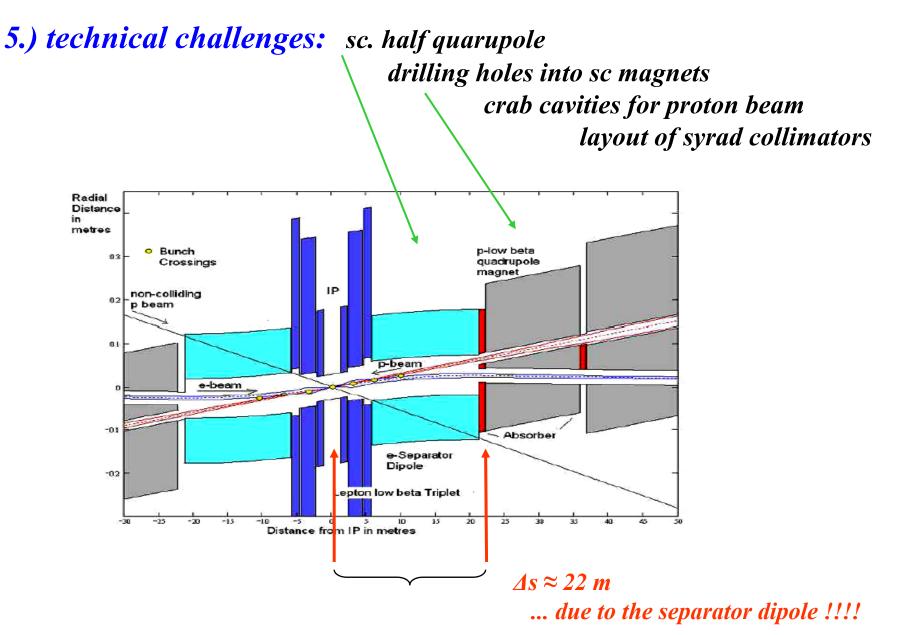
4.) Beam Optics ... & ... Detector Acceptance:


proton lattice: embedded into LHC luminosity optics

electron optics: arc based on LEP-2 like structure IR_8: low beta insertion using triplett focusing

special effects: flat electron beam $\varepsilon_x \gg \varepsilon_y$ has to match round proton beam $\varepsilon_x \approx \varepsilon_y$ beam separation \leftrightarrow early focusing detector angle

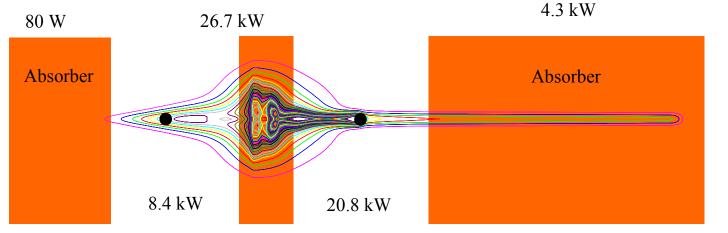
... keep distance "l" as small as possible

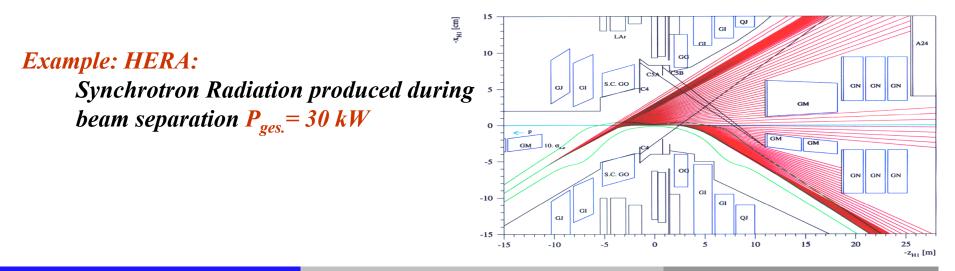


$$L = \frac{1}{2\pi e^2 f_0 n_b} * \frac{I_1 * I_2}{\sqrt{(\sigma_{xp}^2 + \sigma_{xe}^2)(\sigma_{yp}^2 + \sigma_{ye}^2)}}$$

 $\beta(s) = \beta^* + \frac{l^2}{\beta^*}$

Bernhard Holzer, DESY/CERN


LHeC Lattice Design


Bernhard Holzer, DESY/CERN

LHeC Lattice Design

IR Design: Ingredients 6.) Synchrotron Radiation

(Boris Nagorny)

Bernhard Holzer, DESY/CERN

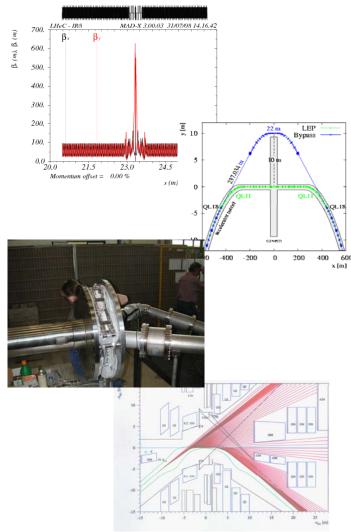
LHeC Lattice Design

Interaction Region Design:

detailed presentations about ...

* *e-optics:* design of a low beta insertion, *embedded into a LEP-2 like arc structure* (Alexander Kling, B.H.)

* e-geometry: bypass regions, (Helmut Burkhardt)


* *p-optics:* low beta insertion combined with the LHC luminosity lattice (B.H.)

* sc. IR magnets: first exotic (?) ideas about (Stephan Russenschuck)

* sc. double magnet design, active magnets (Eugenio Paolomi, Simona Bettoni, Tim Greenshaw,)

* synchrotron radiation: and beam separation (Boris Nagorny)

* rf cavities & power consumption (John Jowett, Trevor Linnecar)

