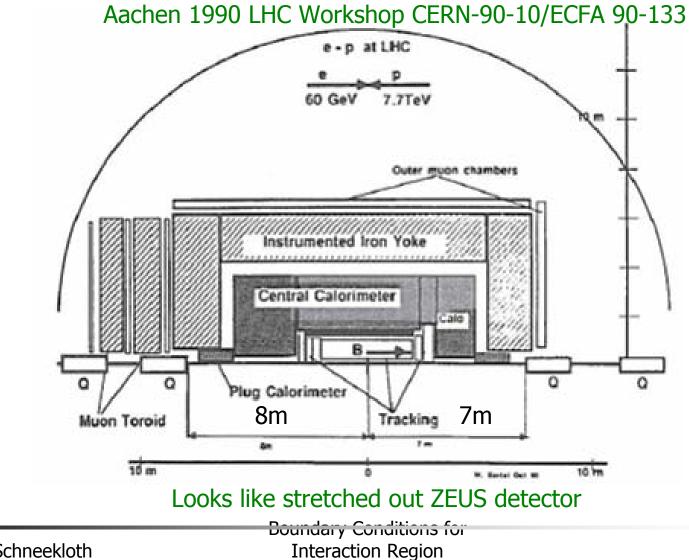
Boundary Conditions for the Interaction Region Design

Uwe Schneekloth DESY


1st ECFA-CERN LHeC Workshop Divonne September 2008

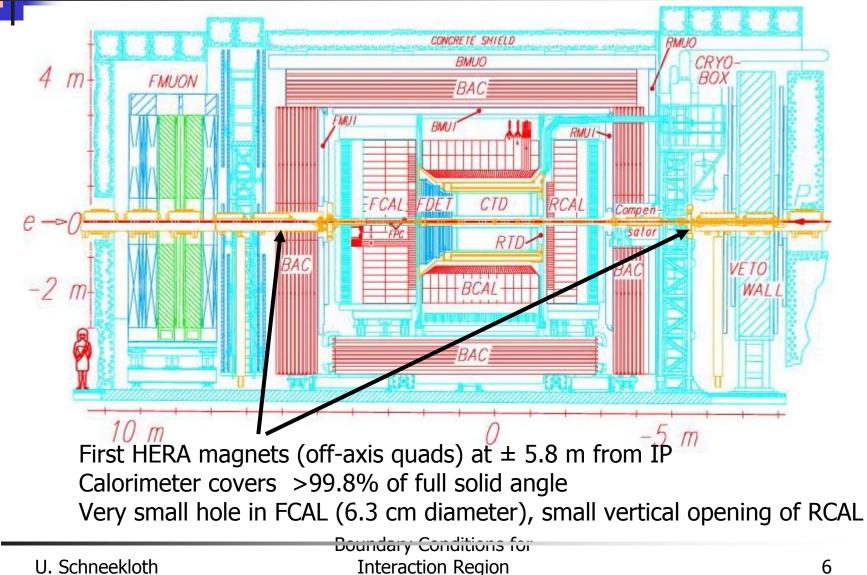
Boundary Conditions

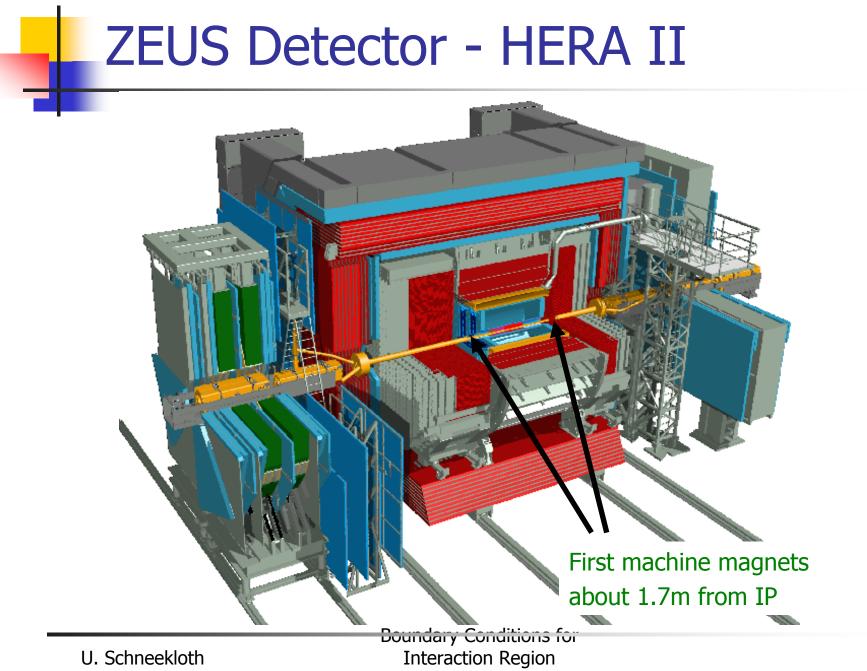
A few general remarks on boundary conditions from the detector side

- Ideally, high luminosity, full (4n) detector acceptance and low background conditions
- More realistic:
 - High luminosity, as required for the physics program
 - Good detector acceptance in forward and rear direction
 - Acceptable background conditions

Luminosity vs. Acceptance

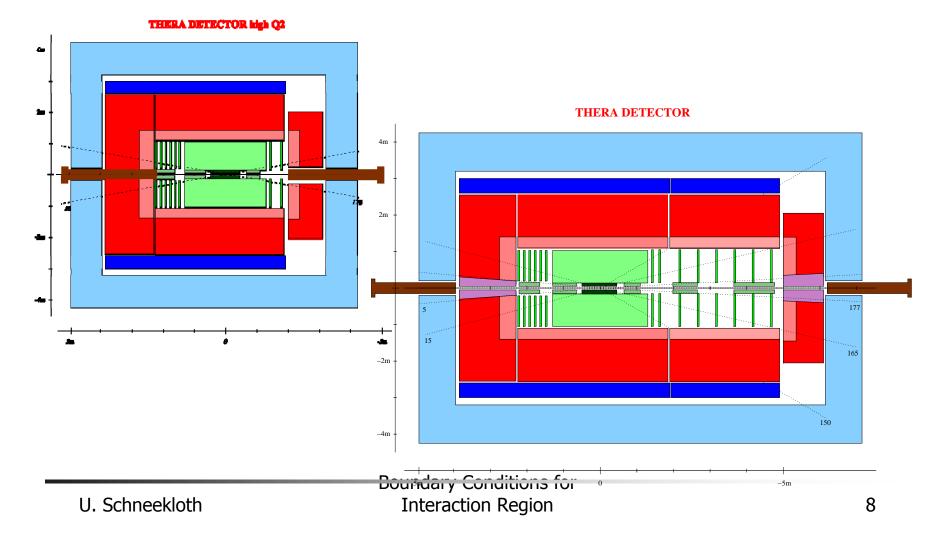
- Luminosity and acceptance very much depend on physics program (to be defined during this workshop)
- Agenda shows a broad range of topics from high Q² to low x and forward physics
- Deep inelastic cross section $\sim 1/Q^4$ (momentum transfer)
 - High Q² physics (search for new physics, electron-weak studies) require high luminosity. Can be done with reduced acceptance
 - Low Q² physics (high parton densities, diffraction,...) requires good forward and rear coverage 1 – 179°. Can be done with reduced luminosity.
 - => Possible scenario two different interaction region setups
 - $L = 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$, $10^{\circ} < \theta < 170^{\circ}$ (prefer magnets not in front of calorimeter)
 - $L = 10^{31} \text{ cm}^{-2} \text{ s}^{-1}, \quad 1^{\circ} < \theta < 179^{\circ}$


Example HERA I and HERA II IRs and Detectors



U. Klein LHeC - electron kinematics LHeC - jet kinematics Q^2/GeV^2 Q^2/GeV^2 10⁶ E_p=7000 GeV 10 ⁶ 2000 **10**° E_P=7000 GeV 20° E_e=70 GeV E_=70 GeV .500_ 10⁵ 10 ⁵ 0.=90° 10⁴ 10 10⁴ 0,=135° -- Z5, 10³ 10³ 6.=1Z0°-**170**0 10² 10² 0,=175° . <u>D.001</u> 10 1799 10 0.=179° **179**° 1 ŵ E,=1000 E,= 3000. 1 $\Theta = 179.5$ = 100 () () Or <u>=</u>20. Ø 10 -1 10 -1 10 -7 10⁻⁵ 10 -3 10⁻² 10⁻⁶ 10 -4 10 ⁻¹ 1 10 -7 10 -1 10 -6 10 -3 10⁻² 10 -4 10⁻⁵ 1 Х Х

5


ZEUS Detector - HERA I

THERA: TESLA on HERA Study

Sketches of high Q² and low x detector/IR setups

Detector Magnet

In general, collider detector have solenoidal fields.

LHeC Detector

Solenoid:

- Certainly for high Q² physics
- Probably also for low x physics
 - Dedicated low x experiment may prefer dipole magnet. Being considered for eRHIC/EIC.
 - Should look into solenoid with integrated dipole magnet
 - Proposed by B.Parker for eRHIC mainly for beam separation.
 - Recently, being studied for ILC IR in order to reduce backgrounds.
 - Question whether dipole field can be sufficiently large.

Background Sources at HERA/LHeC

Electron/positron beam

- Synchrotron radiation
 - Backscattering
 - Photo desorption
 - -> degradation of vacuum
- Beam gas interactions
 - Off momentum electrons
- Higher order mode losses
 - Local heating at injection and ramp (short bunches)
 - -> degradation of vacuum

Need

- Careful design of interaction region and masks
- Excellent vacuum system

Boundary Conditions for

Proton beam

- Low beam lifetime during injection and ramping
- Beam gas interactions, large hadronic cross section
 - Secondary interactions with aperture limitations, i.e. with magnets, beam pipe, masks

Background Conditions

HERA II

- Initially, very severe background conditions. Lost about two years of data taking.
- Mainly limited by current/trips in central drift chambers
 - Proton beam gas background highest rate
 - Electron beam gas and synchrotron radiation depending on beam conditions
- H1 some radiation damage of non-radiation hard silicon vertex detector electronics (~1 kGy)
 - No problem after radiation hard electronics installed
- Max. track trigger rate 100kHz (H1)

LHeC

- Detector will probably use Si tracker. Max. dose ~10 kGy ?
 - Should talk to ATLAS and CMS experts
 - Question: material budget in rear direction might be too large for electron detection.
- First ring-ring study
 - Synchrotron radiation background (talk by B.Nagorny) and degradation of vacuum pressure probably somewhat similar to HERA II

- Luminosity and acceptance requirements very much depend on physics program
- Possible scenario two different interaction region setups
 - $L = 10^{33} \text{ cm}^{-2} \text{ s}^{-1}, \ 10^{\circ} < \theta < 170^{\circ}$
 - $L = 10^{31} \text{ cm}^{-2} \text{ s}^{-1}, \quad 1^{\circ} < \theta < 179^{\circ}$
- Need detailed design of IR setups
- Need detailed study of backgrounds
 - Detector sensitivity depends on chosen technologies