OPTICS DESIGN FOR THE LHEC

A DESIGN FOR THE LHEC LEPTON RING LATTICE

Alexander Kling, Bernhard Holzer, Boris Nagorny

MPY - DESY

O. Brüning, J. Jowett, T. Linnecar, H. Burkhardt, W. Herr,

CERN

1st ECFA-CERN LHeC Workshop

September 2008

OUTLINE LHeC Lepton Ring

DESY 06-006 Cockcroft-06-05

PRELIMINARIES
ARC LATTICE
MATCH TO IR8
SUMMARY

Deep Inelastic Electron-Nucleon Scattering at the LHC^{*}

J. B. Dainton¹, M. Klein², P. Newman³, E. Perez⁴, F. Willeke²

 ¹ Cockcroft Institute of Accelerator Science and Technology, Daresbury International Science Park, UK
² DESY, Hamburg and Zeuthen, Germany
³ School of Physics and Astronomy, University of Birmingham, UK
⁴ CE Saclay, DSM/DAPNIA/Spp, Gif-sur-Yvette, France

Abstract

The physics, and a design, of a Large Hadron Electron Collider (LHeC) are sketched. With high luminosity, 10^{33} cm⁻²s⁻¹, and high energy $\sqrt{s} =$ 1.4 TeV, such a collider can be built in which a 70 GeV electron (positron) beam in the LHC tunnel is in collision with one of the LHC hadron beams and which operates simultaneously with the LHC. The LHeC makes possible deep-inelastic lepton-hadron (ep, eD and eA) scattering for momentum transfers Q^2 beyond 10^6 GeV^2 and for Bjorken x down to the 10^{-6} . New sensitivity to the existence of new states of matter, primarily in the leptonquark sector and in dense Quantum Chromodynamics, is achieved. The precision possible with an electron-hadron experiment brings in addition crucial accuracy in the determination of hadron structure and of parton dynamics at the TeV energy scale. The LHeC thus complements the protonproton and ion programmes, adds substantial new discovery potential to them, and is important for a full understanding of physics in the LHC energy range.

Add a lepton ring to LHC Energy: 70 GeV $E_{cm} = 1.4$ TeV Luminosity: 10^{33} cm⁻² s⁻¹ Interaction Point: IP8

Alexander Kling, MPY-DESY

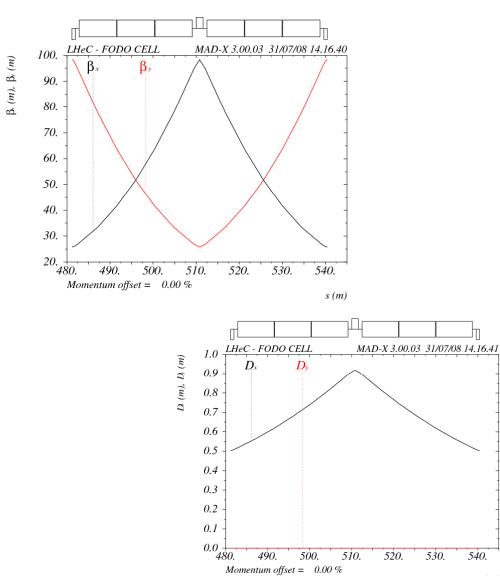
LHeC Lattice Design

DESIGN CONSTRAINTS

- Matched beam sizes at the IP required for stable operation.
- Tolerable beam-beam tune shift parameters.
- Lepton beta function must respect certain limits: Upper limit to avoid excessive chromaticity contribution from strong focusing at the IP.

Lower limit from maximally tolerable beam-beam tune shift.

• Choose parameters close to LEP design

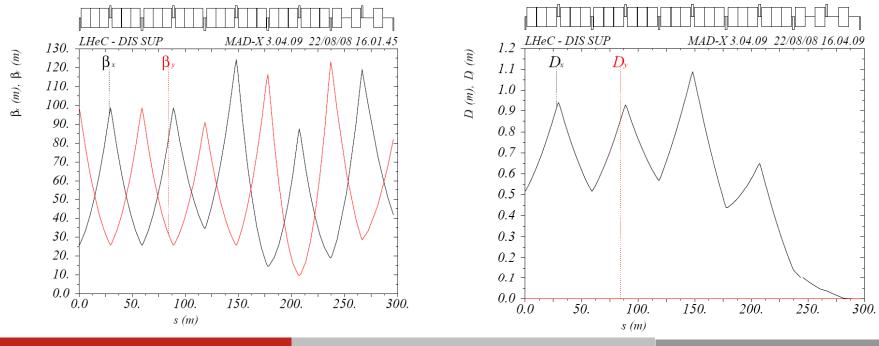

Lepton Ring Parameter	Unit	LEP	LHeC
Cell length	т	79	59.25
Phase Advance	deg	60/90/108	72
Number of Cells		290	384
Bending Radius	т	3065.2	3060.2

• Apply an RF frequency shift to adjust the emittance to the desired value.

Alexander Kling, MPY-DESY

2.) ARC LATTICE

Parameter	Unit	Value
Cell length	m	59.25
Phase Advance hor./ver.	deg	72/72
Bending Radius	m	3060.2
Length of Dipoles	т	8.65
Number of Dipoles/Cell		6
Length of Quadrupoles	m	1.6
Maximum Beta Function	т	98.4
Minimum Beta Function	m	25.9
Maximum Dispersion	m	0.94
Minimum Dispersion	т	0.52

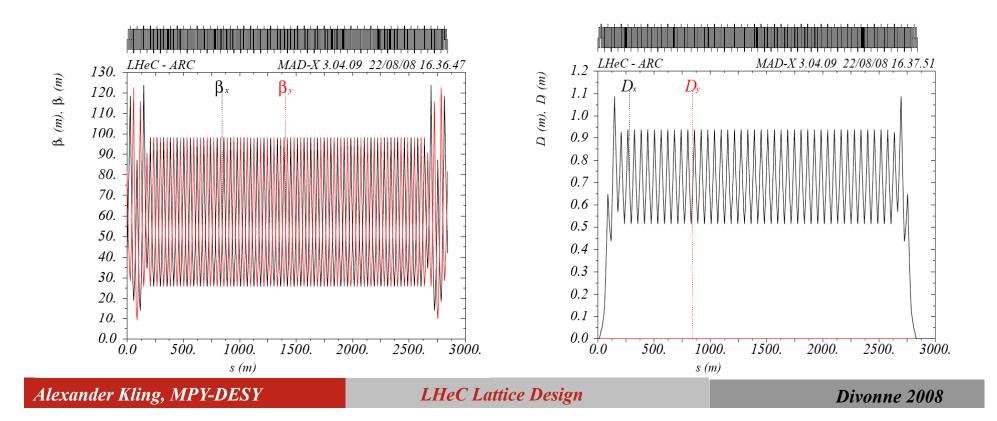


s(m)

3.) DISPERSION SUPPRESSOR

Very preliminary design:

- Continue FODO structure from arc for 7 half cells. Length of dispersion suppressor:207.375 m
- Use 8 individually powered quadrupoles.
- Leaves two degrees of freedom to adjust hor./ver. phase advance over the dispersion suppressor.
- Optical functions matched to reasonable values until input from straight section design is vailable.

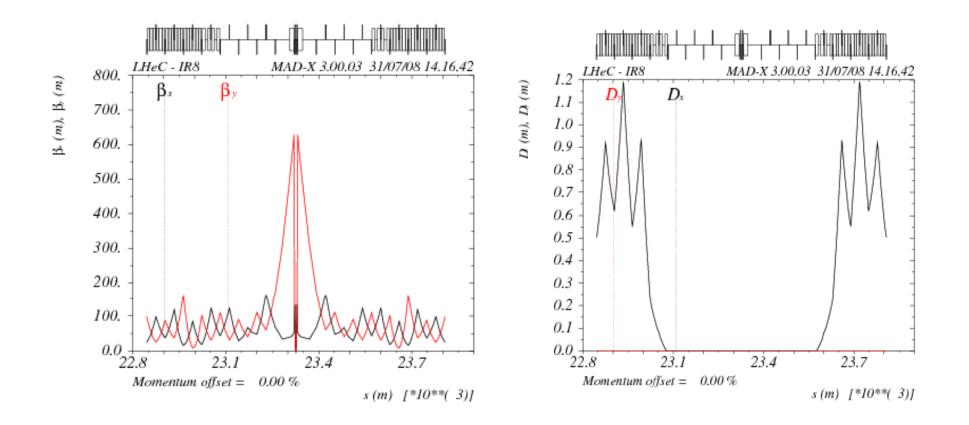

DISPERSION SUPPRESSOR - OPTICAL FUNCTIONS

Alexander Kling, MPY-DESY

LHeC Lattice Design

ARC PARAMETERS

Parameter	Unit	Value
Number of regular Cells		40
Length	m	2370 (as in LEP)
Length incl. Disp. Suppr.	m	2844
Bending Radius	m	3060.2
Total Phase Advance hor. / vert.	$rad/2\pi$	9.66 / 9.76
Chromaticity hor. / vert.		-11.43 / -11.67


4.) LAYOUT IR8

- Use a triplet focusing ($\beta_x = 7.1 \text{ cm}, \beta_y = 12.7 \text{ cm}$)
- Triplet is displaced to allow for a quick beam separation --> additional dispersion created close to IP
- Beam separation facilitated by crossing angle (1.5 mrad). 15 m long soft separation dipole completes the separation before the focusing elements of the proton beams.
- Interleaved magnet structure of the two rings: First matching quadrupole after the triplet: at 66.43 m to adjust optical functions --> try to avoid "large" β-functions
- Layout is asymmetric

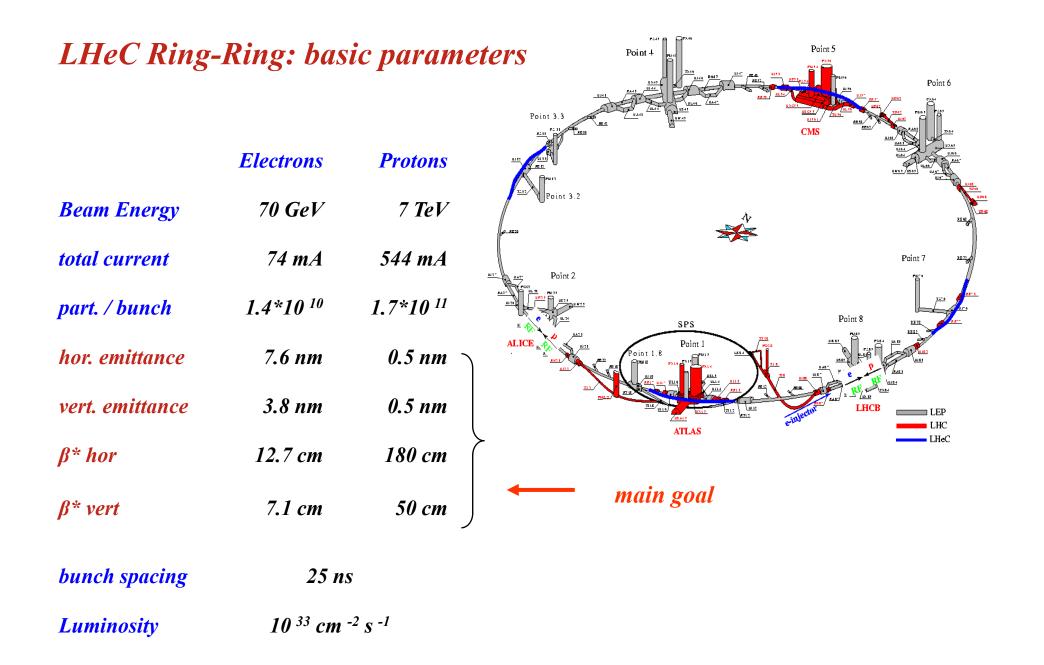
asymmetry compensated by asymmetrically powered dispersion suppressors.

• Optical functions matched to the values at the IP: x = 12.7cm, y = 7.07cm.

OPTICS FUNCTIONS: IR 8

5.) SUMMARY: Overview of Parameters

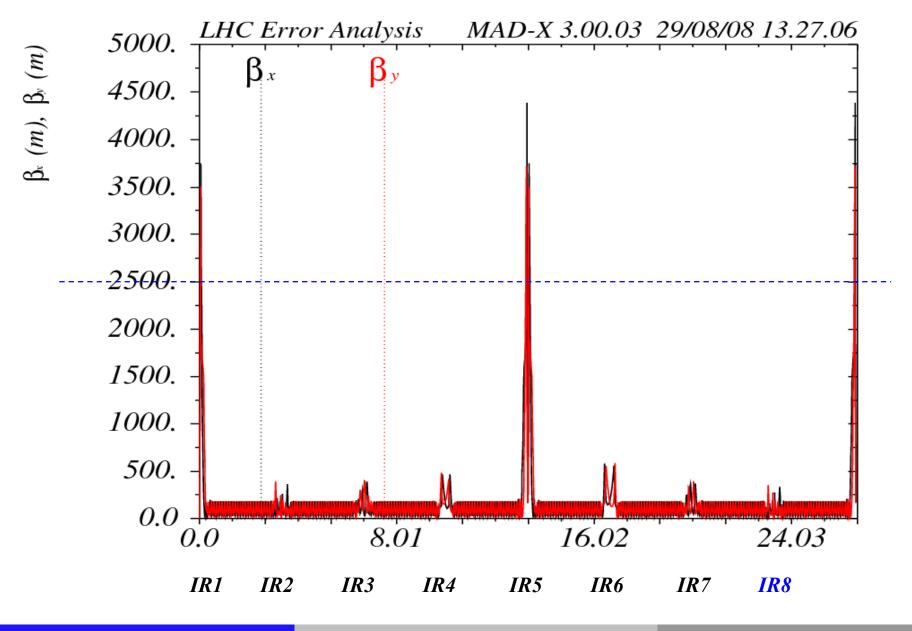
Lepton Ring Parameters		
Parameter	Unit	Value
Circumference	т	26658.872
Beam Energy E _e	GeV	70
Arc Focusing		FODO
Cell Length Icell	m	59.25
Bending Radius	m	3060.213
Hor. / Vert. Betatron Phase Advance per Cell	degree	72 / 72
Number of FODO Cells in the Arc Ncell		384
Arc Chromaticity (hor./ver.)		-91.44/-93.36
Momentum Compaction Factor c		1.28 · 10-4
Horizontal Beam Emittance x (no RF frequency shift)	nm	22
Particle Radiation Energy Loss per Turn eU0	MeV/Turn	686
Hor. / vert. Beta Function at IP	m	12.7 cm / 7.1 cm


Alexander Kling, MPY-DESY

SUMMARY: To Do List

- **Design straight sections** 1-7: replace dummy straight sections by bypass regions (Helmut).
- Include **Rf sections**.
- Include sextupoles for correction of chromatic lattice functions.
- Include energy offset change of damping partition numbers.
- Optimise Phase Advance in the FoDo to reduce beam emittance.
- Lepton emittance has to be reduced (goal = 7.6 nm !)

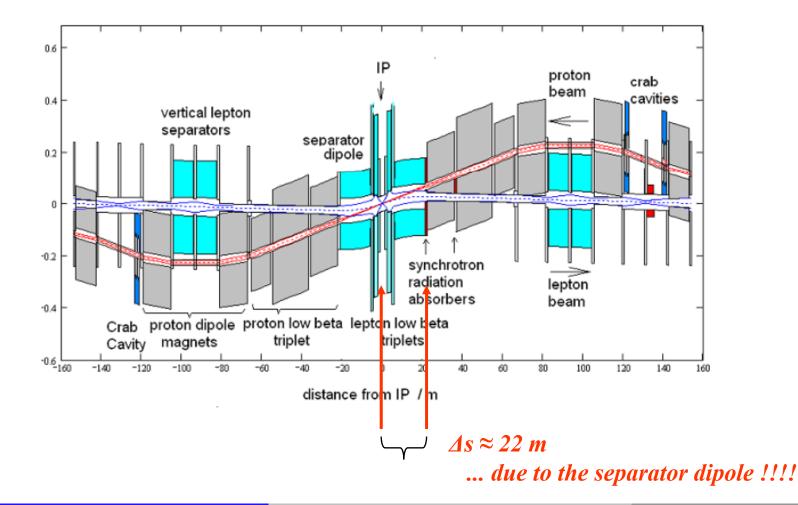
OPTICS DESIGN FOR THE LHEC


Proton Beam Optics and Separation Scheme

Bernhard Holzer, DESY/CERN

LHeC Lattice Design

LHC Standard Luminosity Optics

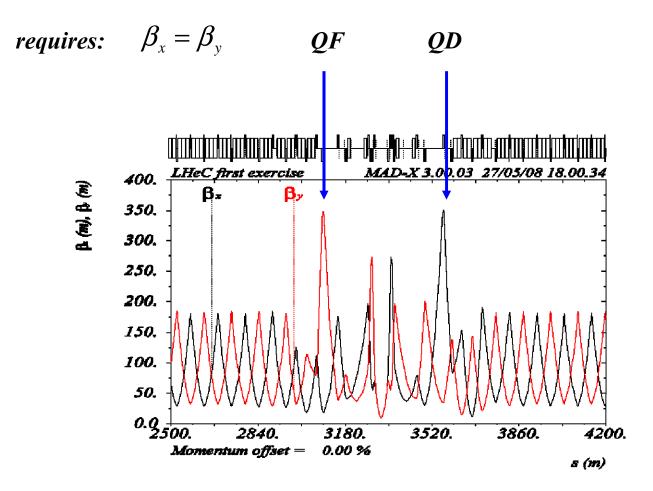

Bernhard Holzer, DESY/CERN

LHeC Lattice Design

Basic Layout ... and the Problem of the story

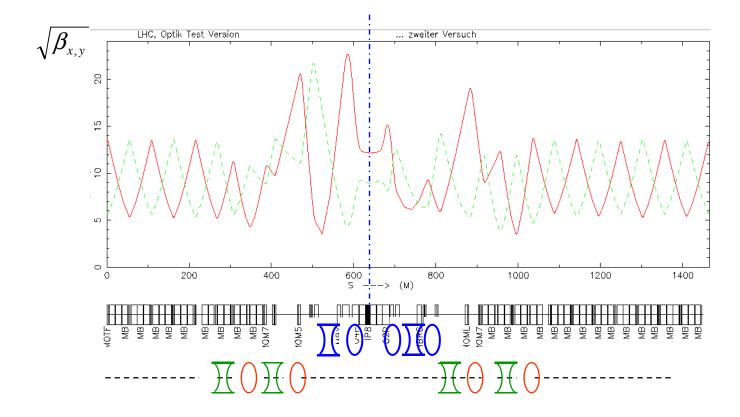
... it is forbidden to act with a 7 TeV field on 70 GeV electrons.

 \rightarrow any IR layout is dominated by the separation scheme



Bernhard Holzer, DESY/CERN

LHeC Lattice Design

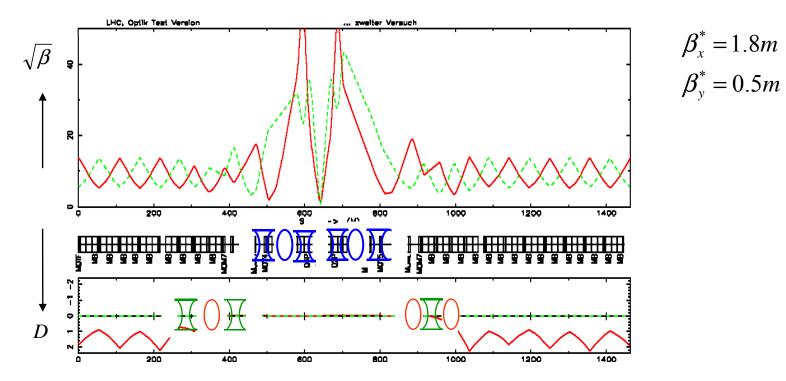

Proton Optics: LHC Standard at IR 8

-- Basic Lattice Design: Antisymmetric Situation

LHeC Proton Optics: "The natural choice"

lhs = *doublet*, *rhs* = *triplet*

smooth behavior & match to the first arc quad

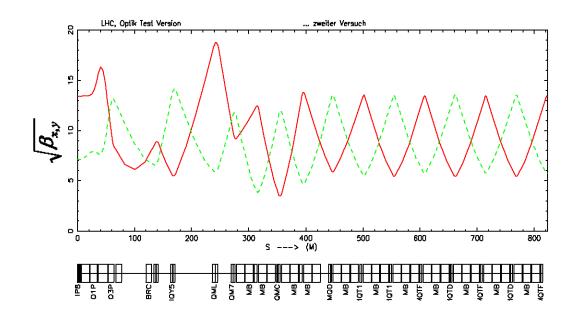

BUT only for moderate β^*

... work still in progress but not the preferred solution

Bernhard Holzer, DESY/CERN

LHeC Proton Optics: The most pretty one -- again a triplet --

... but an asymmetric one


triplett magnets independently powered !! optics scalable up to 7 TeV !! room for optimisation $\leftrightarrow \hat{\beta} \le 2500 \text{ m}$?? new quadrupole magnets ??

Bernhard Holzer, DESY/CERN

LHeC Proton Ring: low energy optics

* we have to inject the protons at a large emittance * we have to separate the protons during electron injection & ramp

$$\mathcal{E}_{7TeV} \approx 5*10^{-10} m$$
$$\mathcal{E}_{450GeV} \approx 8*10^{-6} m$$

... work in progress: rhs optics scalable up to flat top. $\beta \le 400 \text{ m}$

Bernhard Holzer, DESY/CERN

LHeC Lattice Design

The next steps to go:

* include the electron optics & optimise

* proton luminosity optics: ... $\Delta \beta / \beta = 7 \%$ local compensation trivial.

* *e-optics during acceleration:* optics & orbit affected proton flat top optics required (aperture need) dynamic perturbation for the protons has to be compensated during electron ramp

> --> "null problemo ... ?" (HERA was more difficult) but extra corrector dipoles needed

* optimise the separation --> !!!!!!

reduce the Bsep dipole length ?? optimisation of the synchrotron light background reduce distance "s*" of first proton quadrupole ??

* include the dispersive effects of the beam separation (& the half quad)

* ... and what about the second proton beam ????

* Most critical: technical feasibility of Magnets, Crab Cavities etc