Jet Modifications in the RHIC and LHC Era Wayne State, August 20, 2014

In Medium Hadronization: Hadrons and Jets

Rainer Fries

Texas A&M University

With Kyongchol Han Che-Ming Ko JET Reco Working Group

Outline

- Hadronization and in-medium hadronization
- The JET shower recombination module
- How to implement a medium
- Some preliminary results with medium
- Summary

Hadronization Matters

C. Suarez et al, QM08

AuAu 200

dAu ▲ p+p

🛆 Jet Bida

- with the thermal medium.
- More diffusion/thermalization

Can effect be measured directly? DIFFICULT

YES

Rainer Fries

Hadronization Candidates

Lund string fragmentation

Cluster hadronization

Jet recombination

Why Quark Recombination?

 Data indicates a dependence of several important observables on the number of valence quarks.

- Quark coalescence models very successful for hadron production at intermediate $P_{\rm T}$ in HICs.
 - □ Large baryon/meson ratios
 - $\Box \quad \text{Elliptic flow scaling with quark number} \rightarrow \text{QGP signature}?$

Hadronization Candidates

- No clear strategy how to generalize strings or clusters to in-medium hadronization.
- Recombination did not have a working jet shower implementation. Can one get vacuum fragmentation right?
- Including medium effects then in principle straight forward; good track record.

- JET jet shower recombination module: work in progress (see yesterday's talk)
- This is a project that benefits from feedback from the community.

Summary of JET Recombination

Standard PYTHIA Lund string fragmentation:

Summary of JET Recombination

	String	Cluster	Recombination
Gluons	Kinks	Forced decay	Forced decay
Large separation quarks	String breaking	Clusters	String Breaking
Small separation quarks, low mass	Indirectly from string breaking	Clusters	Direct recombination
Small separation quarks, high mass	Indirectly from string breaking	High mass cluster	Resonance

Some Results

Longitudinal structure: dN/dz of stable particles compared to PYTHIA string frag

Adding Medium Partons

- Sampling thermal partons from a blastwave models or hydro.
- Allow recombination of shower partons with thermal partons.

Space-time picture important.

Situation not static: $T = T_c$ hypersurface moving.

Space-time picture important.

- Situation not static: $T = T_c$ hypersurface moving.
- Jet shower partons born into QGP need to either propagate to the surface or be absorbed by the medium.
- How this is handled will depend strongly on the shower MC.
- Hadronization will only be applied to partons at or below T_{c} .

Space-time picture important.

- There is a range, say e.g. *T* = 155-175 MeV, during which recombination can happen.
- This translates to a finite thickness of the critical hypersurface.
- This should be a physical quantity but it's not necessarily a known quantity.

- Eventually this space-time picture will be determined from the underlying hydro event.
- Here: a few very preliminary results for shower born 1 fm inside a static QGP phase. Thickness of the critical hypersurface is another fermi.

Results in a Semi-Realistic Setup

- Modification of low-z spectra for 100 GeV jets by presence of a medium at hadronization.
- Showers: PYTHIA vacuum showers.
- Point of origin 1 fm inside the QGP

Results in a Semi-Realistic Setup

- Modification of P_T-spectra (all z) for 100 GeV jets by presence of a medium at hadronization.
- Showers: PYTHIA vacuum showers.
- Point of origin 1 fm inside the QGP

Varying the Point of Origin (Preliminary)

Modification of *z*-spectra for 100 GeV jets by presence of a medium at hadronization.

Trade some sh-sh to sh-th but almost no change in overall spectrum.

How will Hadronization Matter?

- We need to get the physics of in-medium hadronization at least approximately right in simulations.
 - \Box No effect? Fine, but we needed to check.
 - □ Large effects? Fine!! We need to look into the physics more closely. Explore parameter space.
- Generally: in-medium hadronization is just another layer of interaction with the medium
 - \Box Energy and momentum exchange with the medium.
 - □ In principle interaction continues in the hadronic phase!
- Hadrons: hadronization will only affect small and intermediate momentum hadrons.
 - □ Chemistry effects: should be measurable; expect increased baryon/meson ratio
 - □ Momentum diffusion/broadening: size of the effect needs to be studied in simulations, maybe hard to distinguish from other sources of diffusion/broadening.

How will Hadronization Matter?

- Inclusive jets: hadronization effects suppressed by design.
 - \Box No access to chemistry
 - □ Diffusion/broadening can contribute to in-cone/out-of-cone effects.
- Jet-hadron correlations/fragmentation functions: most promising to see hadronization effects.
 - □ Both hadrochemistry and momentum redistribution.
- None of this has been investigated on the MC level.
- JET MCs should be able to do that within a year.

