

WHY JETS IN MEDIUM? A CASE STUDY NEXT GENERATION JET OBSERVABLES? DISCUSSION

JETS IN E^+E^- AND P-P

Problem: pQCD theory knows partons, experiment sees collimated sprays of hadrons (or just calorimeter energy deposition)

 \rightarrow observables are cross sections for hadron production

To solve this, either

- supplement theory with non-perturbative ingredients (FFs, Lund model, . . .)
- \rightarrow not rigorously controlled, significant systematic errors

or

- define an experimental quantity which resembles a parton
- \rightarrow take care to keep calculable, IR and collinear safety are **theory** requirements!

$\Rightarrow {\sf Jet \ definitions}$

Jets are 'a contract between theory and experiment', made to define something that can be observed by experiment, is not plagued by systematic uncertainty in theory and as directly as possible resembles the relevant physics of pQCD — a **jet** is designed to be **a proxy for a parton**.

JETS IN E⁺E⁻ AND P-P

The role of clustering: systematically reduce observables to the hard pQCD structure

- keeps interesting hard physics, designed to suppress physics at Λ_{QCD} \rightarrow subjets allow to systematically access hard parton branchings
- relevant theory can be compared with data even on analytical level \rightarrow clustering removes need to resum soft and collinear gluon emissions
- experimentally fairly easy, just need energy deposition in calo towers \rightarrow no need to PID or track, no need to distinguish particles inside a tower, . . .

Jets in A-A

Problem: observing interactions between medium (fluid) and partons (pQCD) \rightarrow observables are ratios and conditional probabilities

Scale separation: hard scale p_T O(20-1000) GeV, soft scale T O(0.1 - 0.5) GeV \rightarrow the medium can not affect the hard process of hard splittings

(There are hundreds of papers on medium-induced soft gluon emission, but I'm not aware of a single one that claims the medium can affect hard splittings.)

- medium affects low Q^2 partonic evolution when scales become similar, $Q^2 \sim \Delta Q^2$ \rightarrow interesting physics is at semi-hard scales between T and few $T \sim$ few GeV
- at scale T, DOFs change as soft gluons are indistinguishable from medium \rightarrow rather than partons, fluid elements carry energy and momentum
- substantial (correlated and uncorrelated) background due to underlying event \rightarrow conceptual definition of what is part of the hard process becomes blurry

Jets in A-A

The role of clustering for medium modifications of hard processes:

- keeps interesting physics, designed to suppress physics at $\Lambda_{QCD} \sim T$ \rightarrow systematically suppresses the region where the medium modifications sit
- relevant theory can be compared with data even on analytical level \rightarrow Lisbon Jet Workshop 2014: Theory = MC, analytical calculations are irrelevant

I don't shy away from MC, but theory \neq MC, MC is just a tool to solve a particular type of numerical integral. There's no virtue as such in event generators, what matters is how to dig out the interesting physics, and here non-MC techniques are often superior.

- experimentally fairly easy, just need energy deposition in calo towers
- \rightarrow background subtraction, unfolding of fluctuations, track requirements . . .

Charged hadron R_{AA} at LHC was essentially a 'day one' measurement. Jet R_{AA} didn't follow for a long time. Hard charged hadrons seem to be much easier experimentally.

- creates unique absence of systematic uncertainties due to FF
- \rightarrow in ratios and conditional probabilities, the FF dependence largely cancels

A toolkit for terascale physics isn't necessarily as suitable for jet quenching.

Idea: Assess the constraints of jet vs. hadron high P_T observables.

Start with three different scenarios, of which we know two to be **grossly incorrect** \Rightarrow start to constrain with **jet** observables, see at which point we find out

• YaJEM-DE

- \rightarrow constrained by available RHIC and LHC data
- \rightarrow pathlength dependence driven by $Q_0 \sim \sqrt{E/L}$, 10% elastic energy loss
- \rightarrow broadens showers, breaks self-silimarity at fixed P_T

• YaJEM-E

- \rightarrow incoherent, 100% elastic energy transfer into the medium as drag force
- \rightarrow collimates showers, breaks self-similarity at fixed P_T

• YaJEM+BW

- \rightarrow utilizes the Borghini-Wiedemann prescription to enhance low z gluon production
- \rightarrow pathlength dependence implemented as incoherent
- \rightarrow broadens showers, preserves self-similarity

Jet disappearance:

• decent description of jet $R_{AA} P_T$ dependence (YaJEM-DE does actually worst) \rightarrow no sensitivity to pathlength dependence, broadening, self-similarity. . .

Jet-jet correlations:

- tension for both YaJEM-E and YaJEM+BW if full P_T dependence is used \rightarrow see self-similarity of YaJEM+BW as unchanged shape
- perhaps one might rule out YaJEM-E based on this
- \rightarrow however, we usually ask for something more substantial to rule things out

Hadron disappearance:

- in the hadronic sector, YaJEM+BW is completely off
- \rightarrow leading hadron R_{AA} clearly is not fractional energy loss
- even with normalization of v_2 open, an incoherent mechanism misses the v_2 shape $\rightarrow Q^2$ evolution matters, and clustering obscures it

Hadron-hadron back-to-back (RHIC) or jet-hadron near side (LHC):

- better constraints when **biases** align to magnify physics effects
- h-h: up to factor eight (!) difference to data
 → very sensitive to model differences
- intra-jet-h: still > 50% effects
- \rightarrow jet-track correlations are progressively more constraining

- clustered jet observables (R_{AA} or jet-jet) do not discriminate well \rightarrow perhaps 10-20% effects
- intra-jet-track and hadron disappearance discriminate about equally well \rightarrow about O(50)% effects
- \bullet h-h correlations, especially with RHIC spectral bias, discriminate best \rightarrow factors of 5 and more

Clearly, doing jets to get better constraints for models is not the best motivation. Jet observables are able to discriminate models, but they are more difficult to do experimentally, cannot be done semi-analytically on the theory side and the effect sizes are consistently smaller, i.e. h-h correlations win in the cost-benefit analysis.

Some commonly argued points

• jets define observables independent of the fragmentation function \rightarrow but ratio observables are generically independent of the FF choice (unless for the low z hadron distribution)

- with jets, one can measure the FF and it medium modification
- \rightarrow no, what one can measure is the momentum distribution inside a biased jet sample \rightarrow what a theorist calls a FF is much better accessible in jet-h or γ -h
- clustering gives a jet axis, hadrons do not
- \rightarrow true, but jet axis is hard physics and not interesting for parton-medium interaction

WHAT JETS DO REALLY WELL

- leading hadrons require high z fragmentation, which is not typical
- \rightarrow jet triggers can give (much) higher statistics for same average parton p_T
- jet definition can be smoothly changed to create a more or less biased trigger object
- \rightarrow constituent P_T cuts are rather powerful (but needs MC because is manifestly not IRC safe)
- \Rightarrow design biases to magnify whatever it is you want to see
- \rightarrow for instance geometry:

 \Rightarrow hadron or photon triggers do not allow this rich variety

Jets in medium excel as **triggers** rather than as **observables**!

• relation between parton and trigger object kinematics

- \bullet hadron triggers at RHIC are almost as 'clean' as CMS flow-like jets at LHC \rightarrow consequence of the steeply falling spectrum
- \bullet such 'clean' kinematics makes connection to theory easier \rightarrow averaging is bad

• geometry bias design works much better at RHIC

 \bullet than at LHC

 \rightarrow generically more difficult to align biases to magnify an effect with higher \sqrt{s}

NEXT GENERATION JET OBSERVABLES?

 \Rightarrow the p-p like option?

Terascale physics \neq thermal scale physics!

- \bullet interesting jet quenching physics signals sit at \sim few T, not at hundreds of GeV
- jet tagging by prong topology and grooming (like used for top-jets) \rightarrow probes a completely different mass range without medium effect
- PU removal techniques like PUPPI, softkill, . . .
- \rightarrow will likely remove most of the medium modification signal
- quark/gluon discriminators like girth, . . . used for medium
- \rightarrow will sort medium-modified jets by shape, not quark from gluon modification
- \rightarrow that's the Texan sharpshooter problem

NEXT GENERATION JET OBSERVABLES?

• tomography 2.0 — designed geometry biases probing reaction plane orientation \rightarrow one can literally scan through selected regions of the medium

- possibility to define **key observables** with little sensitivity to medium specifics \rightarrow validate model properties, constrain pathlength dependence, elastic channel,...
- possibility to define tomographic observables with maximal sensitivity \rightarrow measure \hat{q} , near T_C enhancement, ϵ_n, \ldots

NEXT GENERATION JET OBSERVABLES?

 \Rightarrow the A-A option?

• distinction between key observables and tomographic observables \rightarrow little vs. high sensitivity to the assumed geometry

- shift in the view of biases
- \rightarrow the goal should not be to avoid them but to design them properly
- shift in view of jets
- \rightarrow as observables, they are of modest use, as triggers they work perfectly
- shift in the view of the role of harder primary parton spectrum \rightarrow often (statistics!) an advantage, sometimes (tomography) clearly not

If jets are a contract between theory and experiment, we don't need to take the p-p contract made for a completely different situation. We can re-negotiate it and make jets in A-A collision a bias-controlling tool to magnify the physics of jet quenching we actually want to see.