Missing p_T measurements in CMS

3rd Workshop on Jet Modification in the RHIC and LHC Era
Wayne State University, Detroit, USA (2014)
On Behalf of CMS Collaboration
Overview

• Motivation and Previous Results
• Samples and Event Selection
• Jet Reconstruction with New HF/Voronoï Method
• Track Reconstruction and Corrections
• Observables and Results
 • Hemisphere Multiplicity Difference
 • Missing p_T v. A_J
 • Missing p_T v. ΔR
• Summary and Plans
Motivation (I)

- Dijet imbalance observed in PbPb collisions as part of first LHC heavy ions run
 - Enhanced relative to pp, marked centrality dependance

- Can ask:
 - Where does the missing momentum go? (Outside the jet cone?)
 - How is the total momentum distributed amongst particles in different p_T ranges?
Motivation (II)

\[\mathbf{p}_T = \sum_{\text{Tracks}} -p_T^{\text{Track}} \cos (\phi_{\text{Track}} - \phi_{\text{Leading Jet}}) \]

Enhancement of low momentum contribution by centrality

Momentum towards subleading recovered out of cone

Motivation (III)

- Dijet imbalance observed in cone (A_J) is not fully recovered until large ΔR
 - Lower momentum contribution preferentially towards the subleading jet axis
 - Large ΔR momentum contribution also preferentially towards the subleading jet axis

- Can still ask (and to be presented):
 - What is the distribution of this momentum imbalance as a function of ΔR?
 - How does this compare to pp?
 - In contrast with previous comparisons to PYTHIA+HYDJET
Samples and Selection

- PbPb data at 2.76 TeV with integrated luminosity of 150 μb⁻¹
 - Tracks reconstructed over 3 iterations
 - Calo jets, reconstructed with anti-k_T R = 0.3, Voronoi subtraction
- pp data at 2.76 TeV with integrated luminosity of 5.3 pb⁻¹
 - Tracks reconstructed over 7 iterations
 - Calo jets, reconstructed with anti-k_T R = 0.3
- High p_T trigger in PbPb and pp, require jet with p_T > 80 GeV/c
- Dijet Selection
 - p_{T,1} > 120 GeV/c
 - p_{T,2} > 50 GeV/c
 - |\eta_1|,|\eta_2| < 1.6 (0.5)
 - \Delta\phi > 5\pi/6
- Track Selection
 - p_T > 0.5 GeV/c
 - |\eta| < 2.4

Impact of cuts

CMS-PAS-HIN-14-010
Jet Reco. w/ Voronoi Algorithm (I)

- New CMS underlying event subtraction algorithm

- Model the underlying event at mid-rapidities by the transverse energy eta dependence and Fourier harmonics at forward rapidity

- Subtraction of the underlying event performed on constituent basis
 - energy subtracted from individual towers
 - results in negative towers

- Equalization to remove negative towers
 - Energy is redistributed
 - Smear jets by transferring energy locally to negative towers
Random cone study in minimum bias data shows result consistent with zero through centrality and deviation of less than 1 GeV/c as function of η.
• Correct for efficiency and fake rate in both pp and PbPb
 • Additional secondary rate correction applied to pp
• Correction parameters are:
 • Centrality (event density)
 • p_T
 • ϕ
 • η
 • Minimum ΔR_{jet} (local density)
• Good agreement with truth after correction in all parameters
 • Left: example in p_T
Observables: A Cartoon Picture

Project onto diet axis

Define cones w.r.t. individual jet axes
Observables: Dijet Axis

Define new axis for projection of track p_T: **Dijet Axis**

- $\phi_{dijet} = (\phi_1 + (\pi - \phi_2))/2$
- CMS-HIN-10-004 used leading jet axis
 - Leading axis results in non-cancellation of background in ΔR
 - Dijet axis makes p_T sum symmetric w.r.t. dijet system, background cancels
Observables: Multiplicity Difference

- CMS-HIN-10-004, observed tracks in subleading hemisphere of lower p_T than leading

- Can revisit observation with a multiplicity difference measurement

Define:

$$\Delta_{mult} = N_{Trk}^{\text{Corrected}} |\Delta \phi_{Trk, \text{average}} > \pi/2 | - N_{Trk}^{\text{Corrected}} |\Delta \phi_{Trk, \text{average}} < \pi/2|,$$

Hemisphere 2 Hemisphere 1
Observables: Missing p_T v. A_J

- Revisit to missing p_T measurement
- More differential in centrality
- Examine relative to pp
- Define sum of track momentum projected onto dijet axis:

$$p_T^\parallel = \sum_i -p_T^i \cos (\phi_i - \phi_{\text{Dijet}}).$$

What do we expect after subtracting pp?
Observables: Missing p_T v. ΔR (I)

- What is the missing p_T distribution through large ΔR?
- Do we recover full imbalance?
- How does this compare to pp?
- Define binning:

$$\Delta R = \sqrt{\Delta \phi_{\text{Trk, jet}}^2 + \Delta \eta_{\text{Trk, jet}}^2}$$

What is the full distribution this samples?
Observables: Missing p_T v. ΔR (II)

- Limited here in ΔR due to statistics and acceptance
- Need mid-rapidity jets

$$\Delta R = \sqrt{\Delta \phi_{\text{Trk,jet}}^2 + \Delta \eta_{\text{Trk,jet}}^2}$$
• As function of \(A_J = (p_{T,1} - p_{T,2})/(p_{T,1} + p_{T,2}) \), increasing multiplicity towards subleading hemisphere

• excess approaches 15 particles in most central PbPb relative to pp
• As function of $\Delta p_{T,12} = (p_{T,1} - p_{T,2})$, similar picture
 • excess approaches same rough numbers in PbPb central collisions towards subleading hemisphere
• Compared to pp, see a centrality dependent excess of 0.5 - 2.0 p_T particles towards subleading hemisphere
• Replace 2.0 - 8.0 p_T particles in pp
Results: Missing p_T v. ΔR (I)

- Inclusive A_J selection
- See a centrality dependent enhancement of low p_T particles in PbPb relative to pp

Excess through large ΔR
Results: Missing p_T v. ΔR (II)

• $A_J < 0.22$ selection
• Some enhancement of 0.5-1.0 GeV/c particles in PbPb relative to the same selection in pp

0.5 - 1.0 p_T excess through large ΔR
Results: Missing p_T v. ΔR (III)

- $A_J > 0.22$ selection
- See a greater enhancement of low p_T particles in PbPb relative to the same selection in pp, particularly 1.0-2.0 GeV/c
Results: Missing p_T v. ΔR (IV)

In pp, out-of-cone radiation for $A_J > 0.22$ selection carried by third jets

0.5 - 2.0 GeV/c p_T balances in PbPb

2.0 - 8.0 GeV/c p_T balances in pp
Results: Missing p_T v. ΔR (V)

Totals within 1 GeV/c of zero outside of cone of $R = 0.4$.

Difference between PbPb and pp in momentum of particles making up imbalance.

Curves of integrated missing p_T similar shape, adjust starting point?
Results: Missing p_T v. ΔR (VI)

CMS-PAS-HIN-14-010

Adjusting for starting point, curves in PbPb and pp approximately the same
Summary and Plans

- Dijet momentum imbalance can be recovered by summing over large angles
 - Subleading jet particles are characterized by higher multiplicities at a lower momentum
 - Relative to pp, observe lower momenta and higher multiplicities
 - 2.0 - 8.0 GeV in pp -> 0.5 - 2.0 in PbPb
 - Integrated curve very similar after adjusting first bin

- Currently pursuing generator comparisons:
 - Particularly for ΔR distribution, look for low p_T enhancement through large angles and integrated curves
 - Working with generator authors to integrate into framework useable by CMS collaboration in spirit of Lisbon Accord (I believe our next topic?)
Backup
Backup: Gen. Pythia w/ Cuts

CMS Preliminary Simulation

- no p_T or η cut
- $|\eta|<2.4$
- $p_T>0.5$ GeV/c
- $|\eta|<2.5$, $p_T>0.5$ GeV/c

PYTHIA

Generator-level $R = 0.3$
Backup: Jet p_T scale and resolution

CMS-PAS-HIN-14-010

CMS Preliminary Simulation

$|\eta|<2$

$\sqrt{s_{NN}} = 2.76$ TeV

anti-k_T Calo R=0.3

$\mu(p_T^{\text{Reco}}/p_T^{\text{Gen}})$

$\sigma(p_T^{\text{Reco}}/p_T^{\text{Gen}})$

PYTHIA
PYTHIA+HYDJET

50-100 %
30-50 %
10-30 %
0-10 %

p_T^{Gen} (GeV/c)
Define dijet axis as bisecting axis between leading and flipped subleading hemispheres defined w.r.t. axis perpendicular to dijet.
Backup: Out-Cone

CMS-PAS-HIN-14-010

pp 5.3 pb\(^{-1}\)

PbPb 150 \(\mu\)b\(^{-1}\)

PbPb 0-30%

\(\sqrt{s_{NN}} = 2.76\) TeV

Out-of-Cone, 0.8 < \(\Delta R\)

PbPb - pp

PbPb - pp

\(p_T > 120\) GeV/c

\(p_T > 50\) GeV/c

|\(\eta\),|\(\phi|<1.6\)

CMS-PAS-HIN-14-010