

Missing p_T measurements in CMS

3rd Workshop on Jet Modification in the RHIC and LHC Era Wayne State University, Detroit, USA (2014) On Behalf of CMS Collaboration

Overview

- Motivation and Previous Results
- Samples and Event Selection
- Jet Reconstruction with New HF/Voronoi Method
- Track Reconstruction and Corrections
- Observables and Results
 - Hemisphere Multiplicity Difference
 - Missing p_T v. A_J
 - Missing $p_T v. \Delta R$
- Summary and Plans

Motivation (I)

- Dijet imbalance observed in PbPb collisions as part of first LHC heavy ions run
 - Enhanced relative to pp, marked centrality dependance
- 0-10% 0.2 0. Phys.Rev.C84:024906,2011 (c) CMS $\int L dt = 35.1 \text{ pb}^{-1}$ L dt = 6.7 μb p_,>120 GeV/c ● pp √s=7.0 TeV PbPb √s_=2.761 Event Fraction p___> 50 GeV/c 🔶 РҮТНІА 🗕 PYTHIA+DATA Δφ₁₂ > 2π Anti-k₊, R=0.5 Iterative Cone, R=0.5 50-100% 30-50% (e) Event Fraction 0.1 20-30% 10-20 0-10% 0.8 0.4 0.8 0.2 0.4 0.6 0.2 0.2 0.4 0.6 $A_{J} = (p_{T_{1}} p_{T_{2}})/(p_{T_{1}} p_{T_{2}})$

- Can ask:
 - Where does the missing momentum go? (Outside the jet cone?)
 - How is the total momentum distributed amongst particles in different p_T ranges?

Motivation (II)

8/18/2014

Christopher McGinn

Motivation (III)

- Dijet imbalance observed in cone (A_J) is not fully recovered until large ΔR
 - Lower momentum contribution preferentially towards the subleading jet axis
 - Large ΔR momentum contribution also preferentially towards the subleading jet axis
- Can still ask (and to be presented):
 - What is the distribution of this momentum imbalance as a function of ΔR ?
 - How does this compare to pp?
 - In contrast with previous comparisons to PYTHIA+HYDJET

Samples and Selection

- PbPb data at 2.76 TeV with integrated luminosity of 150 μ b⁻¹
 - Tracks reconstructed over 3 iterations
 - Calo jets, reconstructed with anti- $k_T R = 0.3$, Voronoi subtraction
- pp data at 2.76 TeV with integrated luminosity of 5.3 pb⁻¹
 - Tracks reconstructed over 7 iterations
 - Calo jets, reconstructed with anti- $k_T R = 0.3$
- High p_T trigger in PbPb and pp, require jet with $p_T > 80$ Gev/c
- Dijet Selection
 - $p_{T,1} > 120 \text{ GeV/c}$
 - $p_{T,2} > 50 \text{ GeV/c}$
 - $|\eta_1|, |\eta_2| < 1.6 (0.5)$
 - $\Delta \phi > 5\pi/6$
- Track Selection
 - $p_T > 0.5 \text{ GeV/c}$
 - *|η|* < 2.4

8/18/2014

Jet Reco. w/ Voronoi Algorithm (I)

- New CMS underlying event subtraction algorithm
- Model the underlying event at mid-rapidities by the transverse energy eta dependence and Fourier harmonics at forward rapidity
- Subtraction of the underlying event performed on constituent basis
 - energy subtracted from individual towers
 - results in negative towers
- Equalization to remove negative towers
 - Energy is redistributed
 - Smear jets by transferring energy locally to negative towers

Jet Reco. w/ Voronoi Algorithm (II)

• Random cone study in minimum bias data shows result consistent with zero through centrality and deviation of less than 1 GeV/c as function of η

Track Reco. and Corrections

- Correct for efficiency and fake rate in both pp and PbPb
 - Additional secondary rate correction applied to pp
- Correction parameters are:
 - Centrality (event density)
 - p_T
 - φ
 - η
 - Minimum ΔR_{jet} (local density)
- Good agreement with truth after correction in all parameters
 - Left: example in p_T

Observables: A Cartoon Picture

Project onto diet axis

Observables: Dijet Axis

Define new axis for projection of track p_T: **Dijet Axis**

- $\phi_{\text{dijet}} = (\phi_1 + (\pi \phi_2))/2$
- CMS-HIN-10-004 used leading jet axis
 - Leading axis results in noncancellation of background in ΔR
 - Dijet axis makes p_T sum symmetric w.r.t. dijet system, background cancels

Observables: Multiplicity Difference

- CMS-HIN-10-004, observed tracks in subleading hemisphere of lower p_T than leading
- Can revisit observation with a multiplicity difference measurement

Define:

$$\Delta_{\text{mult}} = N_{\text{Trk}}^{\text{Corrected}}|_{\Delta\phi_{\text{Trk,average}} > \pi/2} - N_{\text{Trk}}^{\text{Corrected}}|_{\Delta\phi_{\text{Trk,average}} < \pi/2}.$$
Hemisphere 2 Hemisphere 1

Christopher McGinn

Observables: Missing p_T v. A_J

- Revisit to missing p_T measurement
 - More differential in centrality
 - Examine relative to pp
- Define sum of track momentum projected onto dijet axis:

$$\mathbf{p}_{\mathrm{T}}^{\parallel} = \sum_{\mathrm{i}} -p_{\mathrm{T}}^{\mathrm{i}} \cos\left(\phi_{\mathrm{i}} - \phi_{\mathrm{Dijet}}\right)$$

Observables: Missing $p_T v$. ΔR (I)

Observables: Missing $p_T v$. ΔR (II)

- Limited here in ΔR due to statistics and acceptance
 - Need mid-rapidity jets

 $\Delta R = \sqrt{\Delta \phi_{\text{Trk,jet}}^2 + \Delta \eta_{\text{Trk,jet}}^2}$

Results: Multiplicity (I)

- As function of $A_J = (p_{T,1} p_{T,2})/(p_{T,1} + p_{T,2})$, increasing multiplicity towards subleading hemisphere
 - excess approaches 15 particles in most central PbPb relative to pp

Results: Multiplicity (II)

- As function of $\Delta p_{T,12} = (p_{T,1} p_{T,2})$, similar picture
 - excess approaches same rough numbers in PbPb central collisions towards subleading hemisphere

Results: Missing p_T v. A_J

CMS-PAS-HIN-14-010

- Compared to pp, see a centrality dependent excess of 0.5 2.0 p_T particles towards subleading hemisphere
 - Replace 2.0 8.0 p_T particles in pp

Results: Missing $p_T v$. ΔR (I)

CMS-PAS-HIN-14-010

• Inclusive A_J selection

Excess through large ΔR

- See a centrality dependent enhancement of low p_T particles in PbPb relative to pp

Results: Missing $p_T v$. ΔR (II)

CMS-PAS-HIN-14-010

• $A_J < 0.22$ selection

0.5 - 1.0 p_T excess through large ΔR

• Some enhancement of 0.5-1.0 GeV/c particles in PbPb relative to the same selection in pp

Christopher McGinn

Results: Missing $p_T v$. ΔR (III)

• $A_J > 0.22$ selection

1.0 - 2.0 p_T excess through large ΔR

• See a greater enhancement of low p_T particles in PbPb relative to the same selection in pp, particularly 1.0-2.0 GeV/c

Results: Missing $p_T v$. ΔR (IV)

Results: Missing $p_T v$. $\Delta R (V)$

Results: Missing $p_T v$. ΔR (VI)

Summary and Plans

- Dijet momentum imbalance can be recovered by summing over large angles
 - Subleading jet particles are characterized by higher multiplicities at a lower momentum
 - Relative to pp, observe lower momenta and higher multiplicities
 - 2.0 8.0 GeV in pp -> 0.5 2.0 in PbPb
 - Integrated curve very similar after adjusting first bin
- Currently pursuing generator comparisons:
 - Particularly for ΔR distribution, look for low p_T enhancement through large angles and integrated curves
 - Working with generator authors to integrate into framework useable by CMS collaboration in spirit of Lisbon Accord (I believe our next topic?)

Backup: Gen. Pythia w/ Cuts

Backup: Jet p_T scale and resolution

CMS-PAS-HIN-14-010

Observables: A cartoon picture (II)

Hemispheres defined w.r.t. axis perpendicular to dijet

Backup: In-Cone

Christopher McGinn

Backup: Out-Cone

Christopher McGinn