Jet and high- p_T measurements in p+A collisions

Dennis V. Perepelitsa Brookhaven National Laboratory

18 August 2014 3rd Workshop on Jet Modification in the RHIC and LHC Era Wayne State University, Detroit, MI

What physics can p+A data explore?

high- $p_{\rm T}$ processes access the partonic content of the nucleus

and serve as a test of factorization and pQCD-based nPDF frameworks

What physics can *p*+A data explore?

Zhang and Liao, nucl-th/1311.5463 final state effects in p+Pb

predictions of a suppressed $R_{\rm pPb}$ due to quenching in a small QGP

What physics can *p*+A data explore?

Coleman-Smith, Mueller, hep-ph/1307.5911 cloudy proton model

enhanced antiquark PDF from the possibility of "proton +pion" configurations

Minimum bias *p*+Pb data

How are parton densities modified in the nucleus?

- Measurements of the R_{pPb} in 2012 pilot data
 - geometric expectation out to 20 GeV
 - no visible enhancement in the "Cronin" region
- Major challenge: constructing a 5.02 TeV pp reference

- ALICE reports no effect out to 50 GeV...
- CMS shows a 40% enhancement above 20 GeV!
 - challenging to accommodate within nPDF frameworks

Single particles: a tie breaker?

Enhancement is insensitive to rapidity

 $\mathbf{m}^{\text{de}} = \begin{bmatrix} \mathbf{ATLAS Preliminary} \\ \mathbf{p} + Pb \ L_{int} = 25 \ nb^{-1} \\ \mathbf{v}^{\text{s}}_{NN} = 5.02 \ TeV \\ 0.90\% \\ \mathbf{v}^{\text{s}}_{NN} = 5.02 \ TeV \\ \mathbf{p}^{\text{s}}_{NN} = 5.02 \ TeV \ TeV \\ \mathbf{p}^{\text{s}}_{NN} = 5.02 \ TeV \ T$

Enhancement is insensitive to centrality

- Enhancement (tentatively) confirmed by ATLAS at QM'14
- Similar size of effect as CMS, similar kinematic region

Single particles: summary

- CMS/ATLAS give a very different visual impression than ALICE
 - but we must take the error bars seriously
- Much discussion has focused on differences in the *pp* reference
 - another way to proceed: do we have a consistent measurement *p*+Pb yields in the *numerator*?
- Fortunately, it's plausible the LHC will run 5.5 TeV pp in Run 2

Jets in minimum bias p+Pb collisions, I

- ALICE jet spectrum
 - compared to 7 TeV pp data
 - "doubly interpolated" with MC in √s and in rapidity
- First measurement of <u>geometric</u> <u>scaling</u> in jets

- CMS jet cross-section $(d\sigma/dp_T)$
 - compared to 7 TeV pp data
 - "doubly interpolated" with MC in √s and *cone size*
 - systematics from unfolding
 & pp reference

Jets in minimum bias p+Pb collisions, II

- ATLAS jets in 0-90% p+Pb
 - 5 units of rapidity, 40-1000 GeV
- pp reference is 2.76 TeV data
 - same running conditions, same reconstruction procedure & corrections
 - x_T-scaled using previous ATLAS data at 2.76 & 7 TeV
 - resulting systematics are small
- Data in line with (or only slightly above) EPS09 predictions

Jets in minimum bias p+Pb collisions, III

- CMS dijets in minimum bias p+Pb collisions
- shape of the dijet system dN/dη distribution used to probe nPDF effects
 - modifications favor
 EPS09 over pp PDF's

Jets vs. particles?

- Jets and hadrons are different QCD objects
 - no reason they must give the same $R_{\rm pPb}$
- How can we understand these results together?
- Popular idea: particles are more sensitive to a change in q/g fraction
 - example: what if anti-shadowing is all quarks?

- What measurements can provide additional input?
- 1. Could measure fragmentation function in p+Pb
 - what type/size of modification could reproduce this effect?
 - need control over the pp reference
 - any insight from identified particle R_{pPb} (from ALICE)?

- 2. Could access a different mixture of quarks and gluons
 - need a set of hard probes data that can scan in *flavor*
 - with systematic uncertainties small enough to distinguish small deviations
- for example: what if tomorrow we saw a photon R_{pPb} of 1.0? of 1.4?

Where was this effect at RHIC?

 Compilation of *d*+Au and *p*+Pb results in R. Reed's BNL Nuclear Physics Seminar, 7 April 2014

- *R*_{dAu} <u>does</u> reach 1.4, but at a much lower *p*_{T...}
 - 200 GeV / 5.02 TeV = <u>25</u>
- Could this be the same effect?
 - a 40% excess at *x* ≈ 0.02!
 - however, there are competing interpretations of this enhancement in *d*+Au...

Centrality-dependent *p*+Pb data

Dijet η distributions

- <u>CMS</u>: "event activity" measured in *p* and Pb-going HF's, $4 < |\eta| < 5$
 - no extraction of geometric quantities (yet)

- Systematic shift of the dijet dN/dη distribution with event activity
 - challenging to find mechanisms in pQCD frameworks to produce such a rapidity shift!
- <u>Non-trivial interplay</u>
 <u>between hard and soft</u>
 <u>processes...</u>

Jet spectra, I

- Centrality-selected R_{pPb}
 - at intermediate $p_{\rm T}$, jets show ulletgeometric scaling

Jet spectra, II

- Centrality-selected R_{pPb}
 - at intermediate $p_{\rm T}$, jets show geometric scaling
- At high $p_{\rm T}$, strong deviations from geometric expectation
 - suppression in central events
 - enhancement(?) in peripheral events

Jet spectra, III

- Centrality-selected R_{pPb}
 - at intermediate $p_{\rm T}$, jets show geometric scaling
- At high $p_{\rm T}$, strong deviations from geometric expectation
 - suppression in central events
 - enhancement(?) in peripheral events
- Modifications are <u>stronger</u> and begin at <u>lower p_T at more forward</u> rapidities

Just like in CMS dijets, large violations of hard/soft factorization!

Where is this in the CMS data?

- Same effect visible in the CMS dijet $R_{C/MB}(\eta)$
 - enhancement in peripheral / suppression in central
 - increasing modification for more forward dijet systems

CMS HIN-13-001-PAS

Geometric pictures of p+A collisions: I

- Simple picture of *p*+A geometry:
 - soft particle production in the downstream A direction grows with successive number of p-N collisions
 - thus, selecting on a range of E_T (or, e.g. multiplicity) picks out a set of collision geometries with N_{part} , N_{coll} , T_{pA} , etc., that we can estimate

Geometric pictures of p+A collisions: II

central p+A collision

<u>central</u> p+A collision with a hard process

- But the event activity can reflect the presence of a hard process in additional to just the collision geometry
 - known to be true in individual nucleon-nucleon collisions
- So selecting on high ΣE_T preferentially selects hard processes
 - this "autocorrelation" results in a slight mis-estimation of the true $\langle N_{coll} \rangle$

Studies of centrality "bias"

- Detailed studies of this effect by ALICE and PHENIX
 - 1. All result in an *increased* (decreased) R_{pPb} in *central* (peripheral) events
 - 2. All show a weaker "bias" farther from the centrality-determining detector
 - $\bullet \approx 10\text{--}20\%$ effect, depending on centrality cuts & centrality detector
- the high- p_T LHC data show the <u>opposite</u> effects!

Is there jet quenching in small systems?

Final state effects in p+Pb?

CMS HIN-13-001-PAS

No discernable signal of quenching for <u>> 120 GeV jets</u>

Final state effects in p+Pb?

CMS HIN-13-006-PAS

No discernable signal of quenching for <u>40-100 GeV jets</u>

Can we observe rare configurations of the proton wavefunction?

Patterns in the p+Pb data?

- Since this isn't a final state effect, perhaps it is an initial state one?
 - taken at face value, this implies large, impact parameter-dependent modifications to the nPDFs
- But maybe there is more information hidden in the pattern or modifications...
 - Another look at trends in the data: ATLAS jet R_{CP}
 - smooth evolution in p_{T} , centrality, y^{*}

Initial state effects in p+Pb?

- Replot the ATLAS data at multiple rapidities vs. the total jet energy p
 - *R*_{CP} at forward & mid-rapidity falls along a common curve!
 - Modifications at all *y*^{*} are part of the same phenomenon
- Simplest explanation: the modifications are related to x_p

•
$$R_{CP}(p_T, y) = R_{CP}(p) (\text{ or, } = R_{CP}(x_p))$$

Initial state effects in p+Pb?

An initial state effect ... in the proton!

Proton "size" effects

- Idea: anti-correlation between high x_p -parton and proton interaction strength
 - asking for high x_p processes pick out "smaller" proton configurations
 - or, high-x_p configurations have tighter spatial parton-parton correlations
- In the Glauber picture, this smaller interaction strength appears as a smaller effective σ_{NN} in high- x_p events

Geometric pictures of p+A collisions: III

- At fixed *b*, a "smaller" (more weakly interacting) proton undergoes fewer collisions
 - and produces a smaller centrality signal
- Thus, the nucleus acts as a "filter" on the proton size
 - in the centrality framework, this *kinematic* signal appears as a *geometric* signal

What has the LHC taught us about RHIC data?

Shadowing in d+Au: R_{dAu}

- The *p*+Pb results suggest that modifications at <u>low-*p*_T & y > 0</u> are part of the same phenomenon as modifications at <u>high-*p*_T & y = 0</u>
 - because both kinematic regions are dominated by large x_p

- Strong centrality dependence in forward *d*+Au measurements:
 - is it really *b*-dependent shadowing / saturation?
 - ... or a proton size effect? what other measurements have new interpretations?

- R_{CP} of ≈ 0.6 for $p_T > 15$ GeV jets at $\eta \approx 0$ at PHENIX
- R_{CP} of ≈ 0.6 for $p_T > 2-3$ GeV hadrons at $\eta \approx 2$ at PHENIX & BRAHMS
 - (e.g. the hadrons may originate from 3 GeV x cosh(2) / 0.7 \approx 15 GeV jets)
- There may very well be real shadowing effects in the forward RHIC data
 - but the ATLAS results strongly imply that these kinematic regions are, at least partially, reflecting to the same phenomenon

What should we expect from p+Au?

- RHIC will run 200 GeV *p*+Au in 2015
 - in particular, PHENIX will have substantial new capabilities in the forward direction with the MPC-EX
 - allowing the measurement of R_{pAu} at mid-and forward rapidity
- If these modifications are due to initial proton state effects,
 - *p*+Au will have <u>larger</u> effects than *d*+Au
 - since the other nucleon in the deuteron must certainly wash out the proton "size" effect to some extent
 - and there will be <u>particularly</u> large centrality-dependent modifications in the forward direction
 - but it will *not* be a nuclear initial state effect
- Any friendly bets?

Conclusion

- Single particle and jet results are currently a challenge for nPDFbased frameworks
 - complicated by the lack of a clean *pp* reference
 - need more information (on flavor dependence, possible modification of fragmentation...)
- No evidence for jet quenching in *p*+Pb over a large kinematic range
- Proton initial state effects may play a role in all high-p_T centrality dependent measurements
 - and, especially, in low- p_T forward measurements
 - can be attributed to a smaller proton "size" associated with high x_p configurations
- These give us new insight into understanding *d*+Au data, and interesting predictions for *p*+Au

Backup

Z production in *p*+Pb

