Jet Modifications in the RHIC and LHC Era Wayne State, August 19, 2014

Hadronization for Jet Showers MCs

Rainer Fries

Texas A&M University

With Kyongchol Han Che-Ming Ko JET Reco Working Group

Outline

- In-medium hadronization
- String and Cluster Hadronization
- The JET Jet Recombination Formalism
- Outlook: application to in-medium shower MCs
- Summary

Hadronization of Jet Showers

- JET goal related to NSAC Performance Measures: Complete realistic calculations of jet production in a high energy density medium for comparison with experiment. (DM7)
 - □ This includes chemical composition
 - $\hfill\square$ We will need jet-shower MC with in-medium hadronization
- Well-established hadronization models for vacuum shower Monte-Carlo's
 - □ Lund string fragmentation
 - Cluster hadronization
- How to generalize to jets in a medium?
- New kid on the block: recombination
 - □ some early work on vacuum showers.

```
[R. Migneron, M. E. Jones, K. E, Lassila, PLB 114, 189 (1983)]
[R.C. Hwa and C.B. Yang, PRC 70, 024904 (2004); 024905 (2004)]
```

- □ Challenge: get vacuum fragmentation right.
- Medium effects in principle are straight forward to implement; does well with heavy ion single particle spectra.

Rainer Fries

String Fragmentation

- String pictures of hadrons emerging in the early 70s
- Lund string model:
- Very successful in e+e-: JETSET \rightarrow PYTHIA

 This is probably the most used hadronization model, also in HI jet MC.

String Fragmentation

Very well tested

The Lund String

- a string that works -

[from a talk by T. Sjostrand]

... to a point

Further numerous and detailed tests at LEP favour string picture but much is still uncertain when moving to hadron colliders.

[from the same talk by T. Sjostrand]

Cluster Fragmentation (HERWIG)

- Force gluon decays into quarks and antiquarks.
- Local color neutrality: q-qbar form colorneutral clusters.
- Clusters decay isotropically into 2 hadrons which can decay further into stable hadrons.
- Quite a few similarities if compared to recombination.

[Webber, Marchesini]

Comparison

and a labor and a labor a labo	
model string cluster	
energy–momentum picture powerful simple predictive unpredictive)
parameters few many	
flavour composition messy simple unpredictive in-between	_
parameters many few	

"There ain't no such thing as a parameter-free good description"

[T. Sjostrand]

Recombination in Jets

 Bulk hadronization: recombination is successful b/c of large phase space occupation.

- Jets: ~10¹ quarks + antiquarks in a narrow phase space volume; quarks in the "jet bulk" (small *z*) might be packed close enough to recombine.
- This situation will improve dramatically if the jet is in a medium.
- Traditional: direct production of hadrons.
- Include resonances with decays: picture becomes similar to cluster fragmentation.
- Isolated quarks (not in the "jet bulk"): need for strings

Baseline: String Fragmentation (PYTHIA)

- Perturbative PYTHIA parton showers evolved to a scale \mathfrak{Q}_0 .
- Standard PYTHIA Lund string fragmentation:

- Phenomenologically successful.
- Goal: reproduce main aspects of PYTHIA (string) hadron production with the recombination model.

Formalism (I): Prepare Shower

■ Perturbative PYTHIA parton showers evolved to a scale Q₀.

- Decay gluons with remaining nonperturbative virtualities into quarkantiquark pairs.
- Isotropic decay in the gluon restframe.
- Decay chemistry (only up, down, strange quarks)

$$\frac{\Gamma(g^* \to u\bar{u}, d\bar{d})}{\Gamma(g^* \to s\bar{s})} = 2\frac{m^2 + 2m_{u,d}^2}{m^2 + 2m_s^2}\sqrt{\frac{m^2 - 4m_{u,d}^2}{m^2 - 4m_s^2}}$$

Formalism (I): Prepare Showers

- Example: Sample of 10⁶ PYTHIA parton showers with E_{jet} = 100 GeV.
- *dN/dz* before vs after gluon decay

 $z = \frac{\mathbf{p} \cdot \mathbf{P}_{\text{jet}}}{|\mathbf{P}_{\text{jet}}|^2}$

Formalism (II): Space-Time Evolution

■ Perturbative PYTHIA parton showers evolved to a scale 2₀.

- Track shower partons
- Assign average life time τ = 1/Q to partons with virtuality Q in their own restframe.
- Boost to lab frame to get average space-time points of birth of partons

Phase Space Picture of Parton Showers

- Distance of quarks in phase space is the deciding factor for the success of recombination.
- Berkeley, WS and TAMU vacuum showers agree qualitatively!
- Thus: hadronization module should be able to work universally with minor tweaks.
- Plots: distribution of quark-antiquark distance in space (Δr) and momentum space (Δk) in the local rest frame of the pair.

Phase Space Picture of Parton Showers

- Cuts in $\Delta r \cdot \Delta k$ space (light quark mesons):
- $\Delta r < \sigma$: recombination; $\Delta r > \sigma$: strings
- For recombination $(\Delta r < \sigma)$:
 - $\Box \Delta k < l / \sigma$ recombination into hadronic ground states
 - $\Box \Delta k > l / \sigma$ recombination into resonances and decay
 - \square M ~ Δk , (high mass resonances similar to clusters)

Global Picture of Parton Showers

Formalism (III): Recombination

 Use a Monte Carlo version of the instantaneous recombination model by Greco, Ko and Levai.

- Projection of partons onto meson and baryon states, and resonances.
- Equivalent to $2 \rightarrow 1, 3 \rightarrow 1$ processes

- But many of the recombined particles will be resonances → energy conserved.
- Process can be written in terms of Wigner functions.

Formalism (III): Recombination

Meson (q-qbar) and baryon (3q, 3qbar) yields (and their resonances):

$$\frac{dN_M}{d^3 \mathbf{p}_M} = \int d^3 \mathbf{x}_1 d^3 \mathbf{p}_1 d^3 \mathbf{x}_2 d^3 \mathbf{p}_2 f_q(\mathbf{x}_2, \mathbf{p}_2) f_{\bar{q}}(\mathbf{x}_2, \mathbf{p}_2)$$
$$\times W_M(\mathbf{y}, \mathbf{k}) \delta^{(3)}(\mathbf{P}_M - \mathbf{p}_1 - \mathbf{p}_2),$$

$$\frac{dN_B}{d^3 \mathbf{p}_B} = \int d^3 \mathbf{x}_1 d^3 \mathbf{p}_1 d^3 \mathbf{x}_2 d^3 \mathbf{p}_2 d^3 \mathbf{x}_3 d^3 \mathbf{p}_3 f_{q_1}(\mathbf{x}_1, \mathbf{p}_1) \\
\times f_{q_2}(\mathbf{x}_2, \mathbf{p}_2) f_{q_3}(\mathbf{x}_3, \mathbf{p}_3) W_B(\mathbf{y}_1, \mathbf{k}_1; \mathbf{y}_2, \mathbf{k}_2) \\
\times \delta^{(3)}(\mathbf{P}_B - \mathbf{p}_1 - \mathbf{p}_2 - \mathbf{p}_3),$$

- Hadron & resonance Wigner functions: Inspired from harmonic oscillator potentials.
 - \Box Gaussian WF available but here simple step functions: $\frac{9\pi}{2}d\frac{n}{2}$

$$\frac{n^2+1}{2n^2}\theta(\sigma-y)\theta\left(\frac{n}{\sigma}-k\right)$$

 $\hfill\square$ Evaluated at equal time in the pair or triplet rest frame.

Relative coordinates
$$y_1 = \frac{x'_1 - x'_2}{\sqrt{2}}, \qquad y_2 = \frac{x'_1 + x'_2 - 2x'_3}{\sqrt{6}},$$
Rainer Fries
 $k_1 = \frac{p'_1 - p'_2}{\sqrt{2}}, \qquad k_2 = \frac{p'_1 + p'_2 - 2p'_3}{\sqrt{6}},$

Formalism (III): Recombination

- Quantum numbers treated statistically via statistical factors.
 - \Box E.g. color factor *d* = 1/9 for q-qbar.
 - □ This underestimates probabilities to form color singlets for small systems (room for improvement).
- WF parameters physically motivated (but they can be tuned within limitations).
 Current results done with σ = 1 fm
- Resonances and their decays are important (~ clusters)
- Recombination probabilities evaluated in the hadron rest frame.
- Throw dice to determine whether recombination happens.

Formalism (III): Remnant Strings

 Naturally there are remnant quarks and antiquarks which have not found a recombination partner.

- Why? No confinement in parton shower, quarks can get far away.
- In reality: colored object needs to stay connected.
- Return these partons to PYTHIA to connect them with remnant strings.

Formalism (III): Remnant Strings

- "Bulk" low-*z* quarks like to recombine.
- Lonely high-z quarks like to fragment.
- \rightarrow High-*z* part of the jet guaranteed to hadronize as in the vacuum.

Model Summary

- We replaced string fragmentation in the jet "bulk" by recombination.
- Standard PYTHIA Lund string fragmentation:

Results and Comparison: Longitudinal

Longitudinal structure: *dN/dz* of stable particles compared to PYTHIA string frag

Results and Comparison: Transverse

Transverse structure: Jet Broadening

$$B_k = \frac{\sum_{i \in H_k} |\boldsymbol{p}_i \times \boldsymbol{n}_{\mathrm{T}}|}{2\sum_i |\boldsymbol{p}_i|} \,.$$

- Little difference between PYTHIA parton and hadron (string fragmentation) showers.
- Our shower recombination reproduces PYTHIA results.

Adding Medium Partons

- Sampling thermal partons from a blastwave models or hydro.
- Allow recombination of shower partons with thermal partons.

Shower-Thermal Recombination

• Study with blast wave model to study the role of shower-thermal recombination.

Baryon production enhanced.

Summary

- Jet recombination model is up and running.
- Inspiration from both string and cluster fragmentation
- High-*z* part explicitly uses string fragmentation.
- Knobs for fine tuning:
 - □ strange/light quark ratio at gluon splitting
 - \Box Confinement size σ (separation of recombination/string domain)
 - \Box Resonance decay channels
- Working currently with LBNL and WS shower MC to get good vacuum results.

Summary

- How to test? Any comparison to experiment is also (or mainly?) a test of the underlying shower MC.
- Even vacuum shower MC agree only qualitatively, not quantitatively.
- Question: are there good observables we should look at?

	String	Cluster	Recombination
Gluons	Kinks	Forced decay	Forced decay
Large separation quarks	String breaking	Clusters	String Breaking
Small separation quarks, low mass	Indirectly from string breaking	Clusters	Direct recombination
Small separation quarks, high mass	Indirectly from string breaking	High mass cluster	Resonance

