Energy loss and heavy flavor jet production

Zhongbo Kang Los Alamos National Laboratory

3rd Workshop on Jet Modification in the RHIC and LHC Era Wayne State University August 18 – 20, 2014

Probe of quark gluon plasma

 Jet quenching has been proposed as an excellent probe of the hot dense matter (quark gluon plasma) created in heavy ion collisions (RHIC and LHC)

Jet quenching for hadron production in both RHIC and LHC

From phenomenological side, any improvement needed? seems not?!

Theoretical improvements

- Following the standard theory developments in perturbative QCD, there seems to be interesting improvements, which can be done and which could affect our "precise" extraction of medium properties
 - Is the jet transport parameter qhat constant? Does it depend on the hard scale of the external probe?
 - Energy loss: go beyond soft approximation?

QCD factorization

$$d\sigma^{NN \to h+X} = \sum_{abc} f_{a/N}(x_1, Q^2) \otimes f_{b/N}(x_2, Q^2) \otimes \hat{\sigma}_{ab \to c} \otimes D_{c \to h}(z, Q^2)$$

PDFs depends on the scale of the probe

Increasing the energy scale, one sees parton picture differently

SIDIS as an example:

$$\frac{d\sigma^{LO}}{dx_B dy dz_h} = \sigma_0 \sum_q e_q^2 \int \frac{dz}{z} D_{h/q}(z) \int \frac{dx}{x} f_q(x) \delta(1-\hat{x}) \delta(1-\hat{z})$$

If going beyond LO, we face all divergence: renormalized PDFs and FFs Going beyond leading order calculation

 $t_{AB} \rightarrow \infty$

❖ gluon radiation takes place long before the photon-quark interaction
⇒ a part of PDF

Partonic diagram has both long- and short-distance physics

QCD factorization: separation of soft and hard physics

Systematic remove all the long-distance physics into PDFs

PDFs depend on the scale where one separates them

Logarithmic contributions into parton distributions

- Such a scale dependence is described by the well-known DGLAP evolution equation
- What happens in the hot medium? Does this have anything to do with qhat?

Recall high-twist approach to jet quenching

 SIDIS as an example: multiple scattering in the medium leads to induced gluon radiation

Wang-Guo, Qin-Majumder, et.al.

The modification depends on multi-parton correlation function of the type

 $T_F(x_B, 0, 0) \sim \langle A | \bar{\psi}_q(0) \gamma^+ F_{\sigma}^+(y_2^-) F^{\sigma+}(y_1^-) \psi_q(y^-) | A \rangle$

Does such a correlation function depend on the scale? If it does, naturally the qhat will depend on the scale

$$T_F(x_B, 0, 0, \mu^2) \approx \frac{N_c}{4\pi^2 \alpha_s} f_{q/A}(x_B, \mu^2) \int dy^- \hat{q}(\mu^2, y^-)$$

Compute NLO process

- Find a suitable observable, which depends on this correlation function, and then compute its NLO correction
 - The scale dependence follows, similarly like the usual PDFs procedure
- Transverse momentum broadening and double scattering

SIDIS

Kang-Wang-Wang-Xing, 1310.6759, PRL 2014

Leading order is simple, and proportional to the "desired" correlation function

$$\Delta \langle \ell_{hT}^2 \rangle = \left(\frac{4\pi^2 \alpha_s}{N_c} z_h^2\right) \frac{\sum_q e_q^2 T_F(x_B, 0, 0) D_{h/q}(z_h)}{\sum_q e_q^2 f_{q/A}(x_B) D_{h/q}(z_h)}$$

Twist-4 quark-gluon correlation function

$$T_F(x_1, x_2, x_3) = \int \frac{dy^-}{2\pi} e^{ix_1p^+y^-} \int \frac{dy_1^- dy_2^-}{4\pi} e^{ix_2p^+(y_1^- - y_2^-)} e^{ix_3p^+y_2^-} \\ \times \langle A | \bar{\psi}_q(0) \gamma^+ F_\sigma^+(y_2^-) F^{\sigma+}(y_1^-) \psi_q(y^-) | A \rangle \theta(y_2^-) \theta(y_1^- - y^-)$$

Virtual diagrams

Here the blob represents

Double scattering in SIDIS: NLO - 2

- Soft divergence (double pole $\propto \frac{1}{\epsilon^2}$) Real + virtual $\rightarrow 0$
- Collinear divergence (single pole $\propto \frac{1}{\epsilon}$)

For quark-gluon correlation function

$$\mu^2 \frac{\partial}{\partial \mu^2} T_F(x_B, 0, 0, \mu^2) = \frac{\alpha_s}{2\pi} \int_{x_B}^1 \frac{dx}{x} \left[P_{qq}(\hat{x}) T_F(x, 0, 0, \mu^2) + P_{qg \to qg}(\hat{x}) \otimes T_F(x, x, x_B, \mu^2) \right]$$

$$P_{qg \to qg}(\hat{x}) \otimes T_F(x, x, x_B) = C_A \left[\frac{2}{(1 - \hat{x})_+} T(x_B, x - x_B, 0) - \frac{1}{2} \frac{1 + \hat{x}}{(1 - \hat{x})_+} \left(T(x, 0, x_B - x) + T(x_B, x - x_B, x - x_B) \right) \right]$$

Large x limit (LPM interference regime)

$$\mu^2 \frac{\partial \hat{q}(\mu^2)}{\partial \mu^2} = 0$$

Intermediate x region

- 1. mu-dependence \rightarrow Scaling violation!
- 2. Energy dependence \rightarrow consistent with earlier expectation

J. Casalderrey-Solana and X.-N. Wang (2008)

Comparison to HERMES data

• Cold medium $\hat{q}(\mu_0 = 1) = 0.015 GeV^2/fm$

Kang-Wang-Wang-Xing, in preparation

All kinematic dependence can be described quite well !

In the future, study the consequence for hot medium

Soft approximation

- Under soft approximation, the parton does not change identity, so the energy loss has its true meaning
- If the incoming quark loses 90% of its energy (through gluon radiation), the gluon has become the main content, which will fragment to the hadron

Soft Collinear Effective Theory

- Power counting idea from Soft Collinear Effective Theory
 - Collinear: $k \sim Q(1, \lambda^2, \lambda)$
 - Soft: $k \sim Q(\lambda^2, \lambda^2, \lambda^2)$
 - Glauber: k~Q (λ², λ², λ)
- The momentum exchange between jets and medium quasi-particles follow the Glauber type, so Glauber gluons are needed
 - SCET with Glauber gluons are derived

Idilbi-Majumder 08, Ovanesyan-Vitev 11

- Emission of collinear particles is described by SCET Lagrangian
- Easy implementation to compute medium splitting beyond small x limit

August 19, 2014

Results of all medium splitting kernels

Ovanesyan-Vitev 11

$$\begin{split} \left(\frac{dN}{dxd^{2}k_{\perp}}\right)_{q \to qg} &= \frac{\alpha_{s}}{2\pi^{2}}C_{F}\frac{1+(1-x)^{2}}{x}\int\frac{d\Delta z}{\lambda_{g}(z)}\int d^{2}\mathbf{q}_{\perp}\frac{1}{\sigma_{el}}\frac{d\sigma_{el}^{\mathrm{medium}}}{d^{2}\mathbf{q}_{\perp}} \left[-\left(\frac{A_{\perp}}{A_{\perp}^{2}}\right)^{2} + \frac{B_{\perp}}{B_{\perp}^{2}}\cdot\left(\frac{B_{\perp}}{B_{\perp}^{2}} - \frac{C_{\perp}}{C_{\perp}^{2}}\right) \\ &\times\left(1-\cos[(\Omega_{1}-\Omega_{2})\Delta z]\right) + \frac{C_{\perp}}{C_{\perp}^{2}}\cdot\left(2\frac{C_{\perp}}{C_{\perp}^{2}} - \frac{A_{\perp}}{A_{\perp}^{2}} - \frac{B_{\perp}}{B_{\perp}^{2}}\right)\left(1-\cos[(\Omega_{1}-\Omega_{3})\Delta z]\right) \\ &+ \frac{B_{\perp}}{B_{\perp}^{2}}\cdot\frac{C_{\perp}}{C_{\perp}^{2}}\left(1-\cos[(\Omega_{2}-\Omega_{3})\Delta z]\right) + \frac{A_{\perp}}{A_{\perp}^{2}}\cdot\left(\frac{A_{\perp}}{A_{\perp}^{2}} - \frac{D_{\perp}}{D_{\perp}^{2}}\right)\cos[\Omega_{4}\Delta z] \\ &+ \frac{A_{\perp}}{A_{\perp}^{2}}\cdot\frac{D_{\perp}}{D_{\perp}^{2}}\cos[\Omega_{5}\Delta z] + \frac{1}{N_{c}^{2}}\frac{B_{\perp}}{B_{\perp}^{2}}\cdot\left(\frac{A_{\perp}}{A_{\perp}^{2}} - \frac{B_{\perp}}{B_{\perp}^{2}}\right)\left(1-\cos[(\Omega_{1}-\Omega_{2})\Delta z]\right) \\ \end{split}$$

$$\begin{split} \left(\frac{dN}{dxd^{2}\boldsymbol{k}_{\perp}}\right)_{\left\{\begin{array}{l}g \rightarrow q\bar{q}\\g \rightarrow gg\end{array}\right\}} &= \left\{\begin{array}{l}\frac{\alpha_{s}}{2\pi^{2}}T_{R}\left(x^{2}+(1-x)^{2}\right)\\ \frac{\alpha_{s}}{2\pi^{2}}2C_{A}\left(\frac{x}{1-x}+\frac{1-x}{x}+x(1-x)\right)\end{array}\right\}\int d\Delta z \left\{\begin{array}{l}\frac{1}{\lambda_{q}(z)}\\\frac{1}{\lambda_{g}(z)}\end{array}\right\}\int d^{2}\mathbf{q}_{\perp}\frac{1}{\sigma_{el}}\frac{d\sigma_{el}^{\mathrm{medium}}}{d^{2}\mathbf{q}_{\perp}}\\ &\times \left[2\frac{B_{\perp}}{B_{\perp}^{2}}\cdot\left(\frac{B_{\perp}}{B_{\perp}^{2}}-\frac{A_{\perp}}{A_{\perp}^{2}}\right)\left(1-\cos[(\Omega_{1}-\Omega_{2})\Delta z]\right)+2\frac{C_{\perp}}{C_{\perp}^{2}}\cdot\left(\frac{C_{\perp}}{C_{\perp}^{2}}-\frac{A_{\perp}}{A_{\perp}^{2}}\right)\left(1-\cos[(\Omega_{1}-\Omega_{3})\Delta z]\right)\\ &+ \left\{\frac{1}{N_{c}^{2}-1}\\-\frac{1}{2}\end{array}\right\}\left(2\left(\frac{A_{\perp}}{A_{\perp}^{2}}-\frac{B_{\perp}}{B_{\perp}^{2}}\right)\cdot\left(\frac{A_{\perp}}{A_{\perp}^{2}}-\frac{C_{\perp}}{C_{\perp}^{2}}\right)+2\frac{B_{\perp}}{B_{\perp}^{2}}\cdot\left(\frac{A_{\perp}}{A_{\perp}^{2}}-\frac{C_{\perp}}{C_{\perp}^{2}}\right)\cos[(\Omega_{1}-\Omega_{2})\Delta z]\\ &+2\frac{C_{\perp}}{C_{\perp}^{2}}\cdot\left(\frac{A_{\perp}}{A_{\perp}^{2}}-\frac{B_{\perp}}{B_{\perp}^{2}}\right)\cos[(\Omega_{1}-\Omega_{3})\Delta z]+2\frac{C_{\perp}}{C_{\perp}^{2}}\cdot\frac{B_{\perp}}{B_{\perp}^{2}}\cos[(\Omega_{2}-\Omega_{3})\Delta z]\\ &-2\frac{A_{\perp}}{A_{\perp}^{2}}\cdot\left(\frac{A_{\perp}}{A_{\perp}^{2}}-\frac{D_{\perp}}{D_{\perp}^{2}}\right)\cos[\Omega_{4}\Delta z]-2\frac{A_{\perp}}{A_{\perp}^{2}}\cdot\frac{D_{\perp}}{D_{\perp}^{2}}\cos[\Omega_{5}\Delta z]\right)\bigg]. \end{split}$$

August 19, 2014

Results of all medium splitting kernels

Ovanesyan-Vitev 11

$$\begin{split} \left(\frac{dN}{dxd^{2}k_{\perp}}\right)_{q \to qg} &= \frac{\alpha_{s}}{2\pi^{2}}C_{F}\frac{1+(1-x)^{2}}{x}\int\frac{d\Delta z}{\lambda_{g}(z)}\int d^{2}\mathbf{q}_{\perp}\frac{1}{\sigma_{el}}\frac{d\sigma_{el}^{\mathrm{medium}}}{d^{2}\mathbf{q}_{\perp}}\left[-\left(\frac{A_{\perp}}{A_{\perp}^{2}}\right)^{2}+\frac{B_{\perp}}{B_{\perp}^{2}}\cdot\left(\frac{B_{\perp}}{B_{\perp}^{2}}-\frac{C_{\perp}}{C_{\perp}^{2}}\right)\right.\\ &\times\left(1-\cos[(\Omega_{1}-\Omega_{2})\Delta z]\right)+\frac{C_{\perp}}{C_{\perp}^{2}}\cdot\left(2\frac{C_{\perp}}{C_{\perp}^{2}}-\frac{A_{\perp}}{A_{\perp}^{2}}-\frac{B_{\perp}}{B_{\perp}^{2}}\right)\left(1-\cos[(\Omega_{1}-\Omega_{3})\Delta z]\right)\\ &+\frac{B_{\perp}}{B_{\perp}^{2}}\cdot\frac{C_{\perp}}{C_{\perp}^{2}}\left(1-\cos[(\Omega_{2}-\Omega_{3})\Delta z]\right)+\frac{A_{\perp}}{A_{\perp}^{2}}\cdot\left(\frac{A_{\perp}}{A_{\perp}^{2}}-\frac{D_{\perp}}{D_{\perp}^{2}}\right)\cos[\Omega_{4}\Delta z]\\ &+\frac{A_{\perp}}{A_{\perp}^{2}}\cdot\frac{D_{\perp}}{D_{\perp}^{2}}\cos[\Omega_{5}\Delta z]+\frac{1}{N_{c}^{2}}\frac{B_{\perp}}{B_{\perp}^{2}}\cdot\left(\frac{A_{\perp}}{A_{\perp}^{2}}-\frac{B_{\perp}}{B_{\perp}^{2}}\right)\left(1-\cos[(\Omega_{1}-\Omega_{2})\Delta z]\right) \end{split}$$

$$\begin{split} \left(\frac{dN}{dxd^{2}\mathbf{k}_{\perp}}\right)_{\left\{\begin{array}{l}g \rightarrow q\bar{q}\\g \rightarrow gg\end{array}\right\}} &= \left\{\begin{array}{l}\frac{\alpha_{s}}{2\pi^{2}}T_{R}\left(x^{2}+(1-x)^{2}\right)\\\frac{\alpha_{s}}{2\pi^{2}}2C_{A}\left(\frac{x}{1-x}+\frac{1-x}{x}+x(1)\right)^{N}\right\} \int d\Delta z \left\{\begin{array}{l}\frac{1}{\lambda_{q}(z)}\\\frac{1}{\lambda_{g}(z)}\end{array}\right\} \int d^{2}\mathbf{q}_{\perp}\frac{1}{\sigma_{el}}\frac{d\sigma_{el}^{\mathrm{medium}}}{d^{2}\mathbf{q}_{\perp}}\\ &\times \left[2\frac{B_{\perp}}{B_{\perp}^{2}}\cdot\left(\frac{B_{\perp}}{B_{\perp}^{2}}-\frac{A_{\perp}}{A_{\perp}^{2}}\right)\left(1-\cos[(\Omega_{1}-\Omega_{2})\Delta z]\right)+2\frac{C_{\perp}}{C_{\perp}^{2}}\cdot\left(\frac{C_{\perp}}{C_{\perp}^{2}}-\frac{A_{\perp}}{A_{\perp}^{2}}\right)\left(1-\cos[(\Omega_{1}-\Omega_{3})\Delta z]\right)\\ &+ \left\{\begin{array}{l}\frac{1}{N_{c}^{2}-1}\\-\frac{1}{2}\end{array}\right\}\left(2\left(\frac{A_{\perp}}{A_{\perp}^{2}}-\frac{B_{\perp}}{B_{\perp}^{2}}\right)\cdot\left(\frac{A_{\perp}}{A_{\perp}^{2}}-\frac{C_{\perp}}{C_{\perp}^{2}}\right)+2\frac{B_{\perp}}{B_{\perp}^{2}}\cdot\left(\frac{A_{\perp}}{A_{\perp}^{2}}-\frac{C_{\perp}}{C_{\perp}^{2}}\right)\cos[(\Omega_{1}-\Omega_{2})\Delta z]\\ &+2\frac{C_{\perp}}{C_{\perp}^{2}}\cdot\left(\frac{A_{\perp}}{A_{\perp}^{2}}-\frac{B_{\perp}}{B_{\perp}^{2}}\right)\cos[(\Omega_{1}-\Omega_{3})\Delta z]+2\frac{C_{\perp}}{C_{\perp}^{2}}\cdot\frac{B_{\perp}}{B_{\perp}^{2}}\cos[(\Omega_{2}-\Omega_{3})\Delta z]\\ &-2\frac{A_{\perp}}{A_{\perp}^{2}}\cdot\left(\frac{A_{\perp}}{A_{\perp}^{2}}-\frac{D_{\perp}}{D_{\perp}^{2}}\right)\cos[\Omega_{4}\Delta z]-2\frac{A_{\perp}}{A_{\perp}^{2}}\cdot\frac{D_{\perp}}{D_{\perp}^{2}}\cos[\Omega_{5}\Delta z]\right)\bigg]. \end{split}$$

August 19, 2014

Under small x approximation, it reproduces GLV splitting kernels for quark-->quark, and gluon-->gluon

Now a natural place to study the "FINITE x" correction and its consequences

Kang-Ovanesyan-Vitev, et.al., 1405.2612

Using DGLAP evolution

- Now we have four splitting kernels: q-->q, g-->g, q-->g, g-->q
 - Natural framework is to use DGLAP evolution equations to account for multiple gluon emissions

Kang-Ovanesyan-Vitev, et.al., 1405.2612

$$\begin{split} \frac{\mathrm{d}f_q(z,Q)}{\mathrm{d}\ln Q} &= \frac{\alpha_s(Q^2)}{\pi} \int_z^1 \frac{\mathrm{d}z'}{z'} \left\{ P_{q \to qg}(z',Q) f_q\left(\frac{z}{z'},Q\right) + P_{g \to q\bar{q}}(z',Q) f_g\left(\frac{z}{z'},Q\right) \right\},\\ \frac{\mathrm{d}f_{\bar{q}}(z,Q)}{\mathrm{d}\ln Q} &= \frac{\alpha_s(Q^2)}{\pi} \int_z^1 \frac{\mathrm{d}z'}{z'} \left\{ P_{q \to qg}(z',Q) f_{\bar{q}}\left(\frac{z}{z'},Q\right) + P_{g \to q\bar{q}}(z',Q) f_g\left(\frac{z}{z'},Q\right) \right\},\\ \frac{\mathrm{d}f_g(z,Q)}{\mathrm{d}\ln Q} &= \frac{\alpha_s(Q^2)}{\pi} \int_z^1 \frac{\mathrm{d}z'}{z'} \left\{ P_{g \to gg}(z',Q) f_g\left(\frac{z}{z'},Q\right) \\ &+ P_{q \to gq}(z',Q) \left(f_q\left(\frac{z}{z'},Q\right) + f_{\bar{q}}\left(\frac{z}{z'},Q\right) \right) \right\}. \end{split}$$

P=P_{vac}+P_{med}

In the small-x approximation (no flavor mixing)

$$\frac{\mathrm{d}D(z,Q)}{\mathrm{d}\ln Q} = \frac{\alpha_s}{\pi} \int_z^1 \frac{\mathrm{d}z'}{z'} \left[P(z',Q)\right]_+ D\left(\frac{z}{z'},Q\right)$$

$$n(z) = -rac{\mathrm{d}\ln D(z,Q)^{\mathrm{vac}}}{\mathrm{d}\ln z}$$

$$D(z,Q)^{\text{med}} = e^{-(n(z)-1)\left\langle \frac{\Delta E}{E} \right\rangle_z - \langle N_g \rangle_z} D(z,Q)^{\text{vac}}$$

$$\left\langle \frac{\Delta E}{E} \right\rangle_z = \int_0^{1-z} \mathrm{d}x \, x \, \frac{\mathrm{d}N}{\mathrm{d}x}(x) \xrightarrow{z \to 0} \left\langle \frac{\Delta E}{E} \right\rangle \,,$$
$$\left\langle N_g \right\rangle_z = \int_{1-z}^1 \mathrm{d}x \, \frac{\mathrm{d}N}{\mathrm{d}x}(x) \xrightarrow{z \to 1} \left\langle N_g \right\rangle \,,$$

Energy loss vs Evolution (soft-approximation)

- Energy loss: multiple gluon emission -- Poisson distribution
- Evolution: through DGLAP equation (soft approximation)

Kang-Ovanesyan-Vitev, et.al., 1405.2612

Both RHIC and LHC

- QCD evolution using full DGLAP evolution in the medium is on the top of the small x approximation to evolution above (6 GeV for RHIC) and (15 GeV for LHC)
- At small and intermediate pt, the shape of full x evolution is in slightly better agreement with the data

Fragmentation functions

- For single inclusive hadron RAA: the finite x correction is SMALL
 - There should be other observables sensitive to large/finite x correction
- 1. Differences in the fragmentation functions calculated in different approximations are more visible, especially for gluon FF at large values of z.
- 2. However, the sensitivity of RAA to this is reduced because the gluon FF in the medium is more quenched.

The coupling between the jet and the medium is ~15% larger at RHIC (g=2.3) than LHC (g=2.0) Come back to the standard energy loss approach

Some recent study for heavy flavor jet in nucleus-nucleus collisions

B-jets in p+p collisions

- How to define a jet: need jet finding algorithms
 - kt algorithm, anti-kt algorithm, cone algorithm, ...

B-hadron

Define b-jet

- First find a jet. Next, with the jet radius parameter look for a B-hadron (bquark for theory). Call it a b-jet ... Or maybe require the b-quark to be leading ... Or maybe some more creative substructure ("single b-quark jet" at Fermilab)
- Note that the parent parton might have nothing to do with a b-quark

B-jets in p+p collisions

- No readily available NLO calculation for b-jet production (MC@NLO ...)
- PYTHIA 8 (LO+LL parton shower)
- SlowJet program with an anti-kt algorithm versus FastJet shown to give the same result
- Good description to the b-jet cross section as a function of pt and rapidity y
 Huang-Kang-Vitev, 1306.0909, PLB, 201

Hard partonic structure for b-jets

- Medium modification for b-jets in heavy ion collisions comes from both initial-state and final-state effects
 - Initial-state: cold nuclear matter (CNM) effects ⇒ small at high pt as we will show
 - Final-state: parton energy loss ⇒ have to understand the hard partonic structure for b-jets (whether light quark, gluon, or b quark)

Hard partonic structure for b-jets

Simulation in Pythia

Huang-Kang-Vitev, 1306.0909, PLB, 2013

- R_{gluon} : fraction of $g \rightarrow b(\overline{b})$, i.e., hard process generates gluons, which then split into heavy quark pair as contained in b-jets (initiated by gluon)
- $R_{b-quark}$: fraction of $b(\overline{b}) \rightarrow b(\overline{b})$
- R_{other} : fraction of $q(\bar{q}) \rightarrow b(\bar{b})$
- A very small fraction of b-jets originate from a b-quark produced in the hard scattering

August 19, 2014

B-jet cross section calculation in heavy ion collisions

Only a fraction of lost energy (medium induced parton shower) falls inside the cone, which can be computed as follows

$$f(R,\omega^{\text{coll}})_{(s)} = \frac{\int_0^R dr \int_{\omega^{\text{coll}}}^E d\omega \frac{\omega d^2 N_{(s)}^g}{d\omega dr}}{\int_0^{R^\infty} dr \int_0^E d\omega \frac{\omega d^2 N_{(s)}^g}{d\omega dr}}$$

- (1 f) is lost
- In such a formalism, adjust ω^{coll} such that

$$f(R^{\infty}, \omega^{\text{coll}})_{(s)} = \Delta E^{\text{coll}}/E$$

- The right-hand side is simulated independently
- In order to get the jet with same energy, one has to start with a "higher" energy jet before the quenching

$$E'_T = E_T / (1 - (1 - f_{q,g}) \cdot \epsilon)$$

Works fine

Compared with the most recent CMS b-jet data

Huang-Kang-Vitev, 1306.0909, PLB, 2013

b-jet at high pt is not really sensitive to the b-quark energy loss

Works fine

Compared with the most recent CMS b-jet data

b-jet at high pt is not really sensitive to the b-quark energy loss

Photon-tagged b-jet in p+p collisions

- Motivated by the need to increase the fraction of b-jets initiated by prompt b quarks
 - PYTHIA simulation

Huang-Kang-Vitev-Xing, 2014, in preparation

Contribution from different processes

- Left: both fragmentation and direct photon
- Right: direct photon only

Huang-Kang-Vitev-Xing, 2014, in preparation

 $g + b \rightarrow q + b$ $q + g \rightarrow q + \gamma \rightarrow (qb\overline{b}...) + \gamma$ $q + \overline{q} \rightarrow g + \gamma \rightarrow (b\overline{b}...) + \gamma$

On the region of pT < 150 GeV, strong isolation cut could increase the fraction of b-jets coming from prompt b-quarks by 2-3. We will work on this limit for the moment.</p>

Imbalance variables

Huang-Kang-Vitev-Xing, 2014, in preparation

Little effect of collisional energy loss, quenching and asymmetric effects dominated by radiative energy loss

Quote from Jet proposal

Proposal for a Topical Collaboration on

Quantitative Jet and Electromagnetic Tomography (JET) of Extreme Phases of Matter in Heavy-ion Collisions

Abstract

emission can be calculated within pQCD. Through a network of theorists and in collaboration with experimentalists and external associates, the JET Collaboration will: (a) extend the theoretical framework for jet-medium interaction beyond soft and collinear approximations and thereby reduce uncertainties intrinsic to the current theoretical studies; (b) develop new and powerful Monte

1.3 JET Collaboration: Scientific Goals

 Extend the calculation of medium induced gluon bremsstrahlung beyond collinear and soft approximation and explore matching schemes connecting collinear and hard gluon radiation, thereby reducing a major theoretical uncertainty in jet tomographic studies. Summary

- Along the way we develop the powerful MC tools for jet quenching, there are also important theoretical improvements/progress we can make
 - See talk by Tseh Liu
- We study the QCD evolution of qhat in terms of standard factorization framework
- We investigate the energy loss beyond soft approximation
- Heavy flavor jets are very interesting ...

Summary

- Along the way we develop the powerful MC tools for jet quenching, there are also important theoretical improvements/progress we can make
 - See talk by Tseh Liu
- We study the QCD evolution of qhat in terms of standard factorization framework
- We investigate the energy loss beyond soft approximation
- Heavy flavor jets are very interesting ...

Thank you